Exhibit A
 Fixed Antenna Specifications

1 Parabolic Antenna Beamwidth

This application for an experimental license includes the use of a 1.22 meter (4 ft) parabolic antenna transmitting a CW signal at frequencies between 1668.4 and 18000 MHz . Antenna beamwidth is a function of wavelength or more practically the transmit frequency. Below is the formula used to determine the peak gain as a function of efficiency (η), diameter (D) and wavelength (λ) :

$$
\begin{equation*}
G_{p e a k}=10 \log \left[\eta\left(\frac{\pi D}{\lambda}\right)^{2}\right] \tag{1}
\end{equation*}
$$

The peak gain of a parabolic antenna can also be calculated as a function of efficiency (η) and the half power beamwidth $\left(\theta_{3 d B}\right)$:

$$
\begin{equation*}
G_{p e a k}=10 \log \left[\eta\left(\frac{70 \pi}{\theta_{3 d B}}\right)^{2}\right] \tag{2}
\end{equation*}
$$

Equating 1 and 2

$$
\begin{align*}
10 \log \left[\eta\left(\frac{\pi D}{\lambda}\right)^{2}\right] & =10 \log \left[\eta\left(\frac{70 \pi}{\theta_{3 d B}}\right)^{2}\right] \tag{3}\\
\eta\left(\frac{\pi D}{\lambda}\right)^{2} & =\eta\left(\frac{70 \pi}{\theta_{3 d B}}\right)^{2} \\
\left(\frac{D}{\lambda}\right)^{2} & =\left(\frac{70}{\theta_{3 d B}}\right)^{2} \\
\theta_{3 d B} & =\left(\frac{70 c}{D f}\right) \\
\theta_{3 d B} & =\left(\frac{20985472060}{D f}\right) \tag{4}
\end{align*}
$$

Figure 1 shows the relationship between frequency and beamwidth for a 4 ft (1.22 meter) parabolic antenna. Table 1 shows the beamwidth for the specific frequencies in the request for an experimental license.

Figure 1: Beamwidth as a function of frequency $[\mathrm{MHz}]$

Frequency [MHz]	Beamwidth [${ }^{\circ}$]
1747	9.88
2200	7.82
2250	7.64
3649	4.71
4200	4.10
8900	1.93
12700	1.35
18000	0.96

Table 1: Relationship between frequency and beamwidth.

2 Orientation of Beam

The transmit antenna located at $33^{\circ} 57^{\prime} 48^{\prime \prime} \mathrm{N}$ by $84^{\circ} 6^{\prime} 51^{\prime \prime} \mathrm{W}$ is orientated in the horizontal plane 91.50° from true North and in the vertical plane -1.7° from the horizontal plane. Figure 2 shows the elevation profile of the path between the transmit and receive antennas.

Figure 2: Beamwidth as a function of frequency $[\mathrm{MHz}]$

Calculation of the vertical orientation of the beam is shown below:

$$
\begin{align*}
\tan (\theta) & =\frac{1084 f t-927 f t}{5280 f t} \tag{5}\\
& =\frac{157}{5280} \\
\theta_{3 d B} & =\arctan \left(\frac{157}{5280}\right) \\
& =1.7^{\circ} \tag{6}
\end{align*}
$$

