# Orbital Debris Assessment Report 

## Varisat-1

per NASA-STD 8719.14A

## Signature Page



Chad Brinkley, Managing Partner
Varisat, LLC


Michael L. Miller, Licensing Coordinator Sterk Solutions Corp.


Mike H. Miller, Licensing Analyst
Sterk Solutions Corp.

## REFERENCES:

A. NASA Procedural Requirements for Limiting Orbital Debris Generation, NPR 8715.6A, 5 February 2008
B. Process for Limiting Orbital Debris, NAS A-STD-8719.14A, 25 May 2012
C. International Space Station Reference Trajectory, delivered May 2017
D. McKissock, Barba ra, Patricia Loyselle, and Elisa Vogel. Guidelines on Lithiumion Battery Use in Space Applications. Tech. no. RP-08-75. NASA Glenn Research Center Cleveland, Ohio
E. UL Standard for Safety.for Lithium Batteries, UL 1642. 1JL Standard. 4th ed. Northbrook, IL, Underwriters Laboratories, 2007
F. Kwas, Robert. Thermal Analysis of ELaNa-4 CubeSat Batteries, ELVL-20120043254; Nov 2012
G. Range Safety User Requirements Manual Volume 3- Launch Vehicles, Payloads, and Ground Support Systems Requirements, AFSCM 91-710 V3.
H. HQ OSMA Policy Memo/Email to 8719.14: CubeSat Battery Non-Passivation, Suzanne Aleman to Justin Treptow, 10, March 2014
I. HQ OSMA Emai1:6U CubcSat Battery Non Passivation Suzanne Aleman to Justin Treptow, 8 August 2017

This report is intended to satisfy the orbital debris requirements listed in NASA Procedural Requirements for Limiting Orbital Debris Generation, NPR 8715.6A, 5 February 2008, for the Varisat-1 mission.

Sections 1 through 8 of Process for Limiting Orbital Debris, NAS A-STD-8719.14A, 25 May 2012, are addressed in this document; sections 9 through 14 are in the domain of the launch provider and are addressed by others.

| RECORD OF REVISIONS |  |  |
| :---: | :--- | :---: |
| REV | DESCRIPTION | DATE |
| 0 | Original submission | April 2021 |
| 1 | Revised for new orbit inclination | Sept. 2021 |

The following table summarizes the compliance status of the Varisat- 1 spacecraft. The status is fully compliant with all applicable requirements.

| Requirements | Compliance Assessment | Comments |
| :--- | :--- | :--- |
|  |  |  |
| $4.3-1 \mathrm{a}$ | Not Applicable | No planned debris release |
| $4.3-1 \mathrm{~b}$ | Not Applicable | No planned debris release |
| $4.3-2$ | Not Applicable | No planned debris release |
| $4.4-1$ | Compliant | Batteries incapable of debris <br> producing failure |
| $4.4-2$ | Compliant | Batteries incapable of debris <br> producing failure |
| $4.4-3$ | Not Applicable | No planned breakups |
| $4.4 .-4$ | Not Applicable | No planned breakups |
| $4.5-1$ | Compliant |  |

Table 1 Compliance Assessment per Requirement

## Section 1: Mission Overview

The overall goal of the VariSat-1A/B mission, operated by VariSat LLC, is to experiment and gain flight heritage with a satellite designed to support HF marine data communications. A pair of satellites will be launched, to test the inter satellite link aspect of the system that is envisioned, as well as test ship to satellite and satellite to surface stations.

Also, experimental measurements will be made of on orbit spectral power density vs. frequency, in the 156 MHz and 900 MHz ranges, to help characterize channel congestion and noise floor in these ranges. This will help understand the suitability of these ranges for back up command and control, for future satellites.

The satellites, VariSat-1A and VariSat-1B, will be launched aboard the ABL launch vehicle Demonstration Mission-1, from PSCA Kodiak, No Earlier Than October 31, 2021. This will be the initial launch for the ABL launch vehicle. The satellites will be inserted into an orbit at 350 km apogee and 200 km perigee, on an inclination from the equator of 87.3 degrees. Transmission will begin 30 minutes after deploy from the launch vehicle, and cease upon reentry. Per the DAS analysis discussed later in this report, that is estimated to be 48 days after launch.

The Varisats will be deployed from the Equalizer deployer mounted on the second stage of the ABL launch vehicle. The spacecraft will deploy after the activation signal is initiated by the ABL second stage, causing the deployer door to open which will allow the spacecraft contained therein to exit, pushed gently out by the spring loaded push plate inside the deployer. The deployment switch on board each satellite, will engage at separation from the Equalizer deployer. About 30 minutes after the deploy switches engage, the power up sequence begins. See Schedule 1 for a step by step description of the deploy sequence.

| Varisat-1 Deployment CONOPS VARISAT |  |
| :--- | :--- |
| Timing | Event |
| Deploy of <br> Varisat-1 | Deployment Switch engage the Power up sequence |
| 30 min | EPS Power Up |
| 1 minute later | Cut burn wires to deploy Solar Arrays |
| Wait 90 minutes | Cut burn wire to antennas |
| 1 minute later | Send Initial Transmission Beacon |
| 1 minute later | Payload Power Up |
| 1 minute later | Payload Nominal Operations |

## Schedule 1 Varisat-1 Deployment Schedule and CONOPS

## Section 2: Spacecraft Description

Each of the two spacecraft is an identical unit with the dimensions of 6 stacked 10 cm X 10 cm X 10 cm CubeSat modules (giving an overall stowed dimension of 12 cm X 25.4 cm X 36.6 cm .) The total mass of each satellite is about 11 Kg .

Figure 1 shows the design for each of the two identical spacecraft.


Figure 1 Varisat-1 Design, Typical for Each of Two Spacecraft

The Appendix lists all of the components in each spacecraft, with the characteristics of each.

## Hazards

There are no pressure vessels, hazardous, or exotic materials.

## Batteries

The VariSat satellite battery is a $72 \mathrm{~W}-\mathrm{Hr}$ NiMH battery, consisting of three individual NiMH battery packs. Each $12 \mathrm{~V} / 2000 \mathrm{~mA}-\mathrm{Hr}$ battery pack is comprised of 10 size AA cells. The packs are physically and thermally isolated from each other.

The NiMH battery is utilizes a circuit protection module providing over-charge/overcurrent and over-discharge protection. The satellite EPS also provides additional battery monitoring and protection functions.

Testing of the battery has been conducted to demonstrate compliance with JSC EP-WI032 "Statement of Work: Engineering Evaluation, Qualification and Flight Acceptance Tests for Lithium-ion Cells and Battery Packs for Small Satellite Systems."

The technical requirements in the document provided a foundation for the NIMH test plan. There are differences between the batteries chemistry for LiOH and NiMH. The major difference is NiMH does not have thermal runaway characteristics that LiOH does. So referencing the LiOH test plan standards is seen to be conservative for NIMH.

## Section 3: Assessment of Spacecraft Debris Released during Normal Operations

The assessment of spacecraft debris requires the identification of any object ( $>1 \mathrm{~mm}$ ) expected to be released from the spacecraft any time after launch, including object dimensions, mass, and material.

Section 3 requires rationale/necessity for release of each object, time of release of each object, relative to launch time, release velocity of each object with respect to spacecraft, expected orbital parameters (apogee, perigee, and inclination) of each object after release, calculated orbital lifetime of each object, including time spent in Low Earth Orbit (LEO), and an assessment of spacecraft compliance with Requirements 4.3-1 and 4.3-2.

No releases are planned, therefore this section is not applicable.

## Section 4: Assessment of Spacecraft Intentional Breakups and Potential for Explosions.

There are NO plans for designed spacecraft breakups, explosions, or intentional collisions.
The probability of battery explosion is very low, and, due to the small mass of the satellites and their short orbital lifetimes the effect of an explosion on the far-term LEO environment is negligible, per HQ OSMA Policy Memo/Email to 8719.14: CubeSat Battery Non-Passivation, Suzanne Aleman to Justin Treptow, 10, March 2014

The batteries meet Reg. 56450 (4.4-2), per this reference, by virtue of the HQ OSMA policy regarding battery disconnect stating "CubeSats as a satellite class need not disconnect their batteries if flown in LEO with orbital lifetimes less than 25 years."

Passivation of the batteries at end of mission is provided for in the command structure. However, the low amount of energy stored and small battery cells prevents a catastrophic failure; so that passivation at EOM is not necessary to prevent an explosion or deflagration large enough to release orbital debris. In addition, the plan is that the mission continues until demise, estimated to be 30 days after launch, so that the spacecraft will demise before end of mission.

Assessment of spacecraft compliance with Requirements 4.4-1 through 4.4-4 shows that the Varisat-1s are compliant.

## Section 5: Assessment of Spacecraft Potential for On Orbit Collisions

Calculation of spacecraft probability of collision with space objects larger than 10 cm in diameter during the orbital lifetime of the spacecraft takes into account both the mean cross sectional area (MCSA) and orbital lifetime.

This analysis considers both the nominal case where all of the spacecraft deploy and the solar panels and antennas deploy, and aerodynamic forces orient the spacecraft in the ram direction as planned, and the contingent cases where the solar panels and antennas do not deploy, and/or they tumble instead of orienting.

## Case 1: Deployed with Aerodynamic Stabilization (Nominal)

Per NASA STD-8719.14, ".. an object may be considered to be tumbling randomly, or it may be assumed to have a stable attitude relative to the velocity vector." At the altitude deployed, atmospheric drag is expected to stabilize attitude with the Z axis in the ram direction. The area presented to the RAM direction is calculated to be $0.0342 \mathrm{~m}^{2}$.

With mass of 11 kg , the area to mass ratio in the stabilized attitude is $0.00311 \mathrm{~m}^{2} / \mathrm{kg}$.
From DAS, the orbit lifetime will be approximately 54 days and probability of collision with space objects larger than 10 cm in diameter during the orbital lifetime of the spacecraft, is $6.8846 \mathrm{E}-09$.

## Case 2: Deployed and Tumbling

A deployed, tumbling Varisat-1 can be regarded as a complex object. The formula for the MCSA of a complex object, tumbling, is given by NASA STD-8719.14.
$\operatorname{MCSA}=\left(\mathrm{A}_{\max }+\mathrm{A}_{1}+\mathrm{A}_{2}\right) / 2$, where
$A_{\text {max }}$ is the area of the orthogonal view with the greatest area
$\mathrm{A}_{1}$ and $\mathrm{A}_{2}$ are the areas of the other two orthogonal views.
From this formula, the deployed MCSA is calculated to be $0.302 \mathrm{~m}^{2}$. The Area to mass ratio is therefore $0.0275 \mathrm{~m}^{2} / \mathrm{kg}$. From DAS, the orbit lifetime is approximately eight days, and the probability of collision with space objects larger than 10 cm in diameter during the orbital lifetime of the spacecraft, is $6.0877 \mathrm{e}-08$.

## Case 3: Un-Deployed With Aerodynamic Stabilization

The longest orbit lifetime would result if the solar panels and antenna did not deploy, and if the satellite stabilized with the minimum area face in the RAM direction. This yields an MCSA of $0.0238 \mathrm{~m}^{2}$, and an area to mass ratio of $0.0022 \mathrm{~m}^{2} / \mathrm{kg}$. From DAS, the orbit lifetime is approximately 74 days, and the probability of collision with space objects larger than 10 cm in diameter during the orbital lifetime of the spacecraft, is $4.8702 \mathrm{e}-09$.

## Case 4: Un-Deployed with Tumbling

As a contingency we consider the unexpected case where all of the spacecraft, when ejected from the launcher tube, remained undeployed, e.g., do not unfold, and tumble. The formula for the MCSA of a complex object, tumbling, is given by NASA STD-8719.14.

MCSA $=$ Surface Area $/ 4$ (which for rectangular solids reduces to the formula used in Case 2 also). This yields an MCSA area of $0.0738 \mathrm{~m}^{2}$, and an area to mass ratio of $0.0067 \mathrm{~m}^{2} / \mathrm{kg}$. From DAS, the orbit lifetime is approximately 28 days, and the probability of collision with space objects larger than 10 cm in diameter during the orbital lifetime of the spacecraft, is $1.4832 \mathrm{e}-$ 08.

## Review of All Cases

In summary, the probability of any collision, in any configuration, with debris or meteoroids greater than 10 cm in diameter is $6.0877 \mathrm{e}-08$, per DAS, worst case (deployed and tumbling). This satisfies the 0.001 maximum probability requirement 4.5-1.

The spacecraft have no capability nor have plans for end-of- mission disposal, therefore requirement 4.5-2 is not applicable.

Assessment of spacecraft compliance with Requirements 4.5-1 shows the spacecraft to be compliant. Requirement 4.5-2 is not applicable to this mission.

## Section 6: Assessment of Spacecraft Post Mission Disposal Plans and Procedures

The spacecraft in all cases will naturally decay from orbit within 25 years after launch, satisfying requirement 4.6-1.

Planning for spacecraft maneuvers to accomplish post-mission disposal is not applicable. Disposal is achieved via passive atmospheric reentry.

## Summary of DAS 3.1.2 version Orbital Lifetime Calculations:

DAS inputs are: 350 km apogee and 200 km perigee, on an inclination from the equator of 87.3 degrees, with deployment in 2021.

As an extreme outer limit for orbit lifetime is Case 3 above, the contingency mode wherein the solar panels and antennas does not unfold, and the satellite is assumed stable in flight, yields a value of 74 days. There is no mode in which the spacecraft would be estimated to stay in orbit longer than 74 days.

The assessment of the spacecraft illustrates they are compliant with Requirements 4.6-1 through 4.6-5.

## Section 7: Assessment of Spacecraft Reentry Hazards

A detailed assessment of the components of the spacecraft was performed using DAS version 3.1.2, to verify Requirement 4.7-1. See Appendix for a complete log of DAS inputs and outputs for all cases. The analysis provides a bounding analysis for characterizing the survivability of a component during re-entry. It is conservative in that when it shows terminal energy of a component surviving reentry, it does not consider any loss of material from ablation or charring. Both of these may for some materials decrease the mass and dimensions of the re-entering components, reducing the risk below that calculated.

The surviving components are shown in Table 2.

| Surviving <br> Component | Original <br> Mass, kg | Terminal <br> Energy, <br> Joules | Casualty <br> Area | Total Spacecraft <br> Risk of Human <br> Casualty |
| :---: | :---: | :---: | :---: | :---: |
| 156 MHz Antenna | $\mathbf{0 . 0 4 9}$ | $\mathbf{3 . 2 1}$ | $\mathbf{1 . 0 1}$ | N/A |
|  |  |  |  |  |
|  |  |  |  | $\mathbf{1 : 1 0 0 0 0 0 0 0 0}$ |

Table 2: Surviving Component Analysis
If a component survives to the ground but has less than 15 Joules of kinetic energy, it is not included in the Debris Casualty Area that inputs into the Probability of Human Casualty calculation. This is why the spacecraft has a calculated Risk of Human Casualty from DAS, of 1:100000000. The maximum terminal energy among all the surviving components is 3.21 Joules.
The rest of the components demise upon reentry the spacecraft comply with the less than $1: 10,000$ probability of Human Casualty Requirement 4.7-1.

The Varisat-1 satellites thus are in compliance with Requirement 4.7-1 of NASA-STD-8719.14A.

## Section 8: Assessment for Tether Missions

No tethers are used. Requirement 4.8-1 is satisfied.

## Section 9 through 14:

ODAR sections 9 through 14 pertain to the launch vehicle, and are not covered here.

## DAS Activity Log

0916 2021; 13:17:03PM Activity Log Started
0916 2021; 13:17:03PM Opened Project C:\Users \mille\Sterk\VERISAT DAS
0916 2021; 13:19:03PM Mission Editor Changes Applied
0916 2021; 13:19:03PM Project Data Saved To File
0916 2021; 13:43:43PM Mission Editor Changes Applied
0916 2021; 13:43:43PM Project Data Saved To File
0916 2021; 13:45:02PM Processing Requirement 4.5-1: Return Status : Passed

## ==============

Run Data
==============
**INPUT**
Space Structure Name = Varisat-1
Space Structure Type = Payload
Perigee Altitude $=200.000$ (km)
Apogee Altitude $=350.000$ (km)
Inclination $=87.300$ (deg)
RAAN $=0.000$ (deg)
Argument of Perigee $=0.000$ (deg)
Mean Anomaly $=0.000$ (deg)
Final Area-To-Mass Ratio $=0.0031$ ( $\mathrm{m}^{\wedge} 2 / \mathrm{kg}$ )
Start Year $=2021.000$ (yr)
Initial Mass $=10.995$ (kg)
Final Mass $=10.995$ (kg)
Duration $=10.000$ (yr)
Station-Kept = False
Abandoned = True
**OUTPUT**
Collision Probability $=6.8846 \mathrm{E}-09$
Returned Message: Normal Processing
Date Range Message: Normal Date Range
Status = Pass
$===========$
$===============$ End of Requirement 4.5-1 ================
0916 2021; 14:12:49PM Processing Requirement 4.6 Return Status : Passed
$===========$
Project Data
$============$
**INPUT**
Space Structure Name = Varisat-1
Space Structure Type = Payload
Perigee Altitude $=200.000000(\mathrm{~km})$
Apogee Altitude $=350.000000(\mathrm{~km})$
Inclination $=87.300000$ (deg)
RAAN $=0.000000$ (deg)
Argument of Perigee $=0.000000$ (deg)
Mean Anomaly $=0.000000$ (deg)
Area-To-Mass Ratio $=0.003110$ (m^2/kg)
Start Year $=2021.000000$ (yr)
Initial Mass $=10.995000$ (kg)
Final Mass $=10.995000(\mathrm{~kg})$
Duration $=10.000000$ (yr)
Station Kept = False
Abandoned = True
PMD Perigee Altitude $=-1.000000(\mathrm{~km})$
PMD Apogee Altitude $=-1.000000(\mathrm{~km})$
PMD Inclination $=0.000000$ (deg)
PMD RAAN $=0.000000$ (deg)

```
    PMD Argument of Perigee = 0.000000 (deg)
    PMD Mean Anomaly = 0.000000 (deg)
**OUTPUT**
    Suggested Perigee Altitude = 200.000000 (km)
    Suggested Apogee Altitude = 350.000000 (km)
    Returned Error Message = Reentry during mission (no PMD req.).
    Released Year = 2021 (yr)
    Requirement = 61
    Compliance Status = Pass
==============
================ End of Requirement 4.6 ================
09 16 2021; 14:12:49PM **********Processing Requirement 4.7-1
    Return Status : Passed
***********INPUT****
    Item Number = 1
name = Varisat-1
quantity = 1
parent = 0
materialID = 8
type = Box
Aero Mass = 10.995000
Thermal Mass = 10.995000
Diameter/Width = 0.254000
Length = 0.366000
Height = 0.120000
name = Solar Array Panel
quantity = 16
parent = 1
materialID = 23
type = Flat Plate
Aero Mass = 0.147500
Thermal Mass = 0.147500
Diameter/Width = 0.200000
Length = 0.266000
name = Small Drag Panel/915 MHZ Antenna
quantity = 2
parent = 1
materialID = 23
type = Flat Plate
Aero Mass = 0.216000
Thermal Mass = 0.216000
Diameter/Width = 0.080000
Length = 0.366000
name = Large Side Panels
quantity = 4
parent = 1
materialID = 23
type = Flat Plate
Aero Mass = 0.231000
Thermal Mass = 0.231000
Diameter/Width = 0.153000
Length = 0.206000
name = Narrow Side Panels
quantity = 4
parent = 1
materialID = 23
type = Flat Plate
Aero Mass = 0.090000
Thermal Mass = 0.090000
Diameter/Width = 0.080000
```

```
Length = 0.153000
name = Body Tubes
quantity = 8
parent = 1
materialID = 8
type = Box
Aero Mass = 0.060000
Thermal Mass = 0.060000
Diameter/Width = 0.025400
Length = 0.146000
Height = 0.025400
name = Centerbody
quantity = 1
parent = 1
materialID = 8
type = Box
Aero Mass = 0.546000
Thermal Mass = 0.546000
Diameter/Width = 0.100000
Length = 0.226000
Height = 0.092000
name = End Plate Radiators
quantity = 2
parent = 1
materialID = 8
type = Flat Plate
Aero Mass = 0.249000
Thermal Mass = 0.249000
Diameter/Width = 0.100000
Length = 0.226000
name = Battery Pack
quantity = 3
parent = 1
materialID = 54
type = Box
Aero Mass = 0.267000
Thermal Mass = 0.267000
Diameter/Width = 0.052000
Length = 0.071000
Height = 0.030000
name = 156 MHz Dipole Antenna
quantity = 2
parent = 1
materialID = 54
type = Flat Plate
Aero Mass = 0.049000
Thermal Mass = 0.049000
Diameter/Width = 0.025400
Length = 0.480000
name = Lime SDR Board
quantity = 2
parent = 1
materialID = 54
type = Box
Aero Mass = 0.375000
Thermal Mass = 0.375000
Diameter/Width = 0.059000
Length = 0.088000
Height = 0.017000
name = Raspberry PI 4 Computer
```

```
quantity = 2
parent = 1
materialID = 54
type = Box
Aero Mass = 0.375000
Thermal Mass = 0.375000
Diameter/Width = 0.059000
Length = 0.088000
Height = 0.017000
name = Linear Amp
quantity = 1
parent = 1
materialID = 8
type = Box
Aero Mass = 0.061000
Thermal Mass = 0.061000
Diameter/Width = 0.035000
Length = 0.035000
Height = 0.020000
name = RF Board
quantity = 1
parent = 1
materialID = 54
type = Box
Aero Mass = 0.375000
Thermal Mass = 0.375000
Diameter/Width = 0.059000
Length = 0.088000
Height = 0.017000
name = Power Board
quantity = 1
parent = 1
materialID = 54
type = Box
Aero Mass = 0.500000
Thermal Mass = 0.500000
Diameter/Width = 0.059000
Length = 0.088000
Height = 0.017000
name = LoRa Radio
quantity = 1
parent = 1
materialID = 8
type = Box
Aero Mass = 0.200000
Thermal Mass = 0.200000
Diameter/Width = 0.059000
Length = 0.088000
Height = 0.017000
name = GPS Board
quantity = 1
parent = 1
materialID = 8
type = Box
Aero Mass = 0.100000
Thermal Mass = 0.100000
Diameter/Width = 0.059000
Length = 0.088000
Height = 0.017000
name = GPS Antenna
```

quantity $=2$
parent = 1
materialID $=54$
type = Cylinder
Aero Mass $=0.200000$
Thermal Mass $=0.200000$
Diameter/Width $=0.030000$
Length $=0.035000$
name $=$ Fasteners
quantity $=80$
parent = 1
materialID = 54
type = Cylinder
Aero Mass $=0.015000$
Thermal Mass $=0.015000$
Diameter/Width $=0.030000$
Length $=0.019000$
name $=$ Antenna (Nitinol)
quantity = 1
parent = 1
materialID $=46$
type = Cylinder
Aero Mass = 0.100000
Thermal Mass $=0.100000$
Diameter/Width $=0.002000$
Length $=6.080000$
name $=$ Antenna (copper)
quantity $=1$
parent = 1
materialID = 19
type = Cylinder
Aero Mass $=0.061000$
Thermal Mass $=0.061000$
Diameter/Width $=0.001200$
Length $=6.080000$
**************OUTPUT****
Item Number $=1$
name = Varisat-1
Demise Altitude $=77.999802$
Debris Casualty Area $=0.000000$
Impact Kinetic Energy $=0.000000$
*************************************
name $=$ Solar Array Panel
Demise Altitude $=77.437195$
Debris Casualty Area $=0.000000$
Impact Kinetic Energy $=0.000000$
*************************************
name $=$ Small Drag Panel/915 MHZ Antenna
Demise Altitude $=76.750580$
Debris Casualty Area $=0.000000$
Impact Kinetic Energy $=0.000000$
*************************************
name $=$ Large Side Panels
Demise Altitude $=76.735161$
Debris Casualty Area $=0.000000$
Impact Kinetic Energy $=0.000000$
*************************************
name $=$ Narrow Side Panels
Demise Altitude $=77.045021$
Debris Casualty Area $=0.000000$

```
Impact Kinetic Energy = 0.000000
*************************************
name = Body Tubes
Demise Altitude = 76.831093
Debris Casualty Area = 0.000000
Impact Kinetic Energy = 0.000000
*************************************
name = Centerbody
Demise Altitude = 75.568077
Debris Casualty Area = 0.000000
Impact Kinetic Energy = 0.000000
*************************************
name = End Plate Radiators
Demise Altitude = 75.589218
Debris Casualty Area = 0.000000
Impact Kinetic Energy = 0.000000
**************************************
name = Battery Pack
Demise Altitude = 65.516350
Debris Casualty Area = 0.000000
Impact Kinetic Energy = 0.000000
*************************************
name = 156 MHz Dipole Antenna
Demise Altitude = 0.000000
Debris Casualty Area = 1.009386
Impact Kinetic Energy = 3.213308
*************************************
name = Lime SDR Board
Demise Altitude = 63.070953
Debris Casualty Area = 0.000000
Impact Kinetic Energy = 0.000000
*************************************
name = Raspberry PI 4 Computer
Demise Altitude = 63.070953
Debris Casualty Area = 0.000000
Impact Kinetic Energy = 0.000000
**************************************
name = Linear Amp
Demise Altitude = 74.307945
Debris Casualty Area = 0.000000
Impact Kinetic Energy = 0.000000
*************************************
name = RF Board
Demise Altitude = 63.070953
Debris Casualty Area = 0.000000
Impact Kinetic Energy = 0.000000
**************************************
name = Power Board
Demise Altitude = 61.359833
Debris Casualty Area = 0.000000
Impact Kinetic Energy = 0.000000
*************************************
name = LoRa Radio
Demise Altitude = 73.602501
Debris Casualty Area = 0.000000
Impact Kinetic Energy = 0.000000
**************************************
name = GPS Board
Demise Altitude = 75.721611
Debris Casualty Area = 0.000000
```

```
Impact Kinetic Energy = 0.000000
*************************************
name = GPS Antenna
Demise Altitude = 63.688385
Debris Casualty Area = 0.000000
Impact Kinetic Energy = 0.000000
**************************************
name = Fasteners
Demise Altitude = 75.232559
Debris Casualty Area = 0.000000
Impact Kinetic Energy = 0.000000
*************************************
name = Antenna (Nitinol)
Demise Altitude = 77.426727
Debris Casualty Area = 0.000000
Impact Kinetic Energy = 0.000000
**************************************
name = Antenna (copper)
Demise Altitude = 77.746597
Debris Casualty Area = 0.000000
Impact Kinetic Energy = 0.000000
*************************************
=============== End of Requirement 4.7-1 =================
09 16 2021; 14:12:49PM Project Data Saved To File
09 16 2021; 14:13:51PM Science and Engineering - Orbit Lifetime/Dwell Time
**INPUT**
    Start Year = 2021.500000 (yr)
    Perigee Altitude = 200.000000 (km)
    Apogee Altitude = 350.000000 (km)
    Inclination = 87.300000 (deg)
    RAAN = 0.000000 (deg)
    Argument of Perigee = 0.000000 (deg)
    Area-To-Mass Ratio = 0.003110 (m^2/kg)
**OUTPUT**
    Orbital Lifetime from Startyr = 0.147844 (yr)
    Time Spent in LEO during Lifetime = 0.147844 (yr)
    Last year of Propagation = 2021 (yr)
    Returned Error Message: Object reentered
09 16 2021; 14:25:12PM Mission Editor Changes Applied
09 16 2021; 14:25:12PM Project Data Saved To File
09 16 2021; 14:26:12PM Processing Requirement 4.5-1: Return Status : Passed
===============
Run Data
==============
**INPUT**
    Space Structure Name = Varisat-1
    Space Structure Type = Payload
    Perigee Altitude = 200.000 (km)
    Apogee Altitude = 350.000 (km)
    Inclination = 87.300 (deg)
    RAAN = 0.000 (deg)
    Argument of Perigee = 0.000 (deg)
    Mean Anomaly = 0.000 (deg)
    Final Area-To-Mass Ratio = 0.0275 (m^2/kg)
    Start Year = 2021.000 (yr)
    Initial Mass = 10.995 (kg)
    Final Mass = 10.995 (kg)
    Duration = 10.000 (yr)
    Station-Kept = False
    Abandoned = True
```

```
**OUTPUT**
    Collision Probability = 6.0877E-08
    Returned Message: Normal Processing
    Date Range Message: Normal Date Range
    Status = Pass
==============
================ End of Requirement 4.5-1 =================
09 16 2021; 14:27:33PM Science and Engineering - Orbit Lifetime/Dwell Time
**INPUT**
    Start Year = 2021.500000 (yr)
    Perigee Altitude = 200.000000 (km)
    Apogee Altitude = 350.000000 (km)
    Inclination = 87.300000 (deg)
    RAAN = 0.000000 (deg)
    Argument of Perigee = 0.000000 (deg)
    Area-To-Mass Ratio = 0.027500 (m^2/kg)
**OUTPUT**
    Orbital Lifetime from Startyr = 0.021903 (yr)
    Time Spent in LEO during Lifetime = 0.021903 (yr)
    Last year of Propagation = 2021 (yr)
    Returned Error Message: Object reentered
09 16 2021; 14:31:26PM Mission Editor Changes Applied
09 16 2021; 14:31:26PM Project Data Saved To File
09 16 2021; 14:32:28PM Processing Requirement 4.5-1: Return Status : Passed
=============
Run Data
=============
**INPUT**
    Space Structure Name = Varisat-1
    Space Structure Type = Payload
    Perigee Altitude = 200.000 (km)
    Apogee Altitude = 350.000 (km)
    Inclination = 87.300 (deg)
    RAAN = 0.000 (deg)
    Argument of Perigee = 0.000 (deg)
    Mean Anomaly = 0.000 (deg)
    Final Area-To-Mass Ratio = 0.0022 (m^2/kg)
    Start Year = 2021.000 (yr)
    Initial Mass = 10.995 (kg)
    Final Mass = 10.995 (kg)
    Duration = 10.000 (yr)
    Station-Kept = False
    Abandoned = True
**OUTPUT**
    Collision Probability = 4.8702E-09
    Returned Message: Normal Processing
    Date Range Message: Normal Date Range
    Status = Pass
==============
=============== End of Requirement 4.5-1 =================
09 16 2021; 14:33:06PM Science and Engineering - Orbit Lifetime/Dwell Time
**INPUT**
    Start Year = 2021.500000 (yr)
    Perigee Altitude = 200.000000 (km)
    Apogee Altitude = 350.000000 (km)
    Inclination = 87.300000 (deg)
    RAAN = 0.000000 (deg)
    Argument of Perigee = 0.000000 (deg)
    Area-To-Mass Ratio = 0.002200 (m^2/kg)
**OUTPUT**
```

Orbital Lifetime from Startyr $=0.202601$ (yr)
Time Spent in LEO during Lifetime $=0.202601$ (yr)
Last year of Propagation $=2021$ (yr)
Returned Error Message: Object reentered
0916 2021; 14:33:53PM Mission Editor Changes Applied
0916 2021; 14:33:53PM Project Data Saved To File
0916 2021; 14:34:52PM Processing Requirement 4.5-1: Return Status : Passed
==============
Run Data
==============
**INPUT**
Space Structure Name = Varisat-1
Space Structure Type = Payload
Perigee Altitude $=200.000$ (km)
Apogee Altitude $=350.000$ (km)
Inclination $=87.300$ (deg)
RAAN $=0.000$ (deg)
Argument of Perigee $=0.000$ (deg)
Mean Anomaly $=0.000$ (deg)
Final Area-To-Mass Ratio $=0.0067$ (m^2/kg)
Start Year $=2021.000$ (yr)
Initial Mass $=10.995$ (kg)
Final Mass = 10.995 (kg)
Duration $=10.000$ (yr)
Station-Kept = False
Abandoned $=$ True
**OUTPUT**
Collision Probability $=1.4832 \mathrm{E}-08$
Returned Message: Normal Processing
Date Range Message: Normal Date Range
Status = Pass
$===========$
================ End of Requirement 4.5-1 ================
0916 2021; 14:35:28PM Science and Engineering - Orbit Lifetime/Dwell Time **INPUT**

Start Year $=2021.500000$ (yr)
Perigee Altitude $=200.000000(\mathrm{~km})$
Apogee Altitude $=350.000000(\mathrm{~km})$
Inclination $=87.300000$ (deg)
RAAN $=0.000000$ (deg)
Argument of Perigee $=0.000000$ (deg)
Area-To-Mass Ratio $=0.006700$ (m^2/kg)
**OUTPUT**
Orbital Lifetime from Startyr $=0.076660$ (yr)
Time Spent in LEO during Lifetime $=0.076660$ (yr)
Last year of Propagation $=2021$ (yr)
Returned Error Message: Object reentered

