NTIA Space record data form

NTIA requires the following data for space related experiments using government shared spectrum. For each transmit frequency, please provide the data for both ends of the transmit-receive link. Use Part A to describe the satellite to ground information. Part B is for all ground to space transmit links.

Data below for Varisat-1A and Varisat-1B, two identical satellites deployed together

Part A: Space to Earth Downlink Data

Total Symbol Rate

1000 Symbols/second

Satellite Transmitter Data (Required for Each Frequency)

Transmit Frequency	<i>r</i> :	
24.585 MHz		
24.5864 MHz		
24.687 MHz		
24.6884 MHz		
All data same for al	l frequencies	
Satellite Name: Var	isat-1A and Varisat-1B	
Data Field	Data Answer	Description/Comments
Transmit Power	PWR =	TRANSMIT POWER SUPPLIED TO THE ANTENNA
(PWR)	PWR01 1.91 W	INPUT TERMINAL, EXAMPLE, PWR01 W2 TRANSMIT POWER UNITS INCLUDE:
		W = WATT,
		K = KILOWATT,
		M = MEGAWATT THE WIDTH OF FREQUENCY BAND WHICH IS JUST
Necessary	2.4 kHz	SUFFICIENT TO SUCCESSFULLY TRANSFER DATA.
Bandwidth		FORMULAS CAN BE FOUND IN ANNEX J OF THE
		NTIA MANUAL.
RF Emissions Data	N/A	2-SIDED EMISSION BANDWIDTH VALUES
-3 dB bandwidth		
-20 dB bandwidth		
-40 dB bandwidth		
-60 dB bandwidth		
Modulation Type	BPSK	THE METHOD USED TO SUPERIMPOSE DATA ON
Data Rate	1000 baud	THE CARRIER, EXAMPLE, BPSK, QPSK, GMSK. INFORMATION DATA RATE
Forward Frror	Is FEC used? Yes ⊠ No □	
Correction Coding	FEC Type: _Reed-Solomon, with Viterbi	
	type decoder, both coder outputs being	
	sent successively, 2x2x160 interleave	
	FEC Rate: R(Rate)=1/2, K (Constraint	
	length)=7_,	

DATA RATE COMBINED WITH FEC AND FRAME

OVERHEAD RESULTING IN THE TOTAL SYMBOL RATE AT THE INPUTE TO THE SYMBOL

MAPPER/MODULATOR.

State (RSC)	RSC = WV	
	a (Receiver) at Each Earth Station Location	on T
Fouth Ctation Data (Bassivan) at Fook Fouth Ctation Landting		
Orbits		
Nongeostationary		
SunSynchronous	(MLTAN) =	EXPRESSED AS UNIT OF TIME (HH:MM)
For	Mean Local Time of Ascending Node	MLTAN IS THE ANGLE BETWEEN AN ORBIT'S ASCENDING NODE AND THE MEAN SUN, OFTEN
	ORB = ORB,114IN00350AP00200PE001.49H02NRT01	*ORB FOR IT ENDING IN R01, EXAMPLE, REM05 *ORB,72.9IN03209AP00655PE013.46H01NRR01
		ADDITIONAL
	SYSTEM2,	NONGEOSTATIONARY SATELLITE ADD AN
	THE NUMBER OF SATELLITES IN THE	AND FOR SPACE-TO-SPACE COMMUNICATIONS WITH ANOTHER
	DECIMAL50,	*ORB,98.0IN00510AP00510PE001.58H01NRT01,
	FRACTIONS OF HOURS IN	IN THE SYSTEM, THEN T01, EXAMPLE, REM04
,	ORBITAL PERIOD IN HOURS 1 AND	HOURS IN DECIMAL, THE NUMBER OF SATELLITES
(Orbital Data)	PERIGEE IN KILOMETERS 200 ,	IN KILOMETERS, PERIGEE IN KILOMETERS, ORBITAL PERIOD IN HOURS AND FRACTIONS OF
Nongeostationary	APOGEE IN KILOMETERS 350 ,	REPORT ITS INCLINATION ANGLE, APOGEE
For	INCLINATION ANGLE 114 ,	IF ANY SATELLITES ARE NONGEOSTATIONARY,
Jaccinics		REPORT ITS LONGITUDE IN DDDMMSS FORMAT (XLG AND/OR RLG).
Satellites	Longitude –	ITS LATITUDE AS 000000N (XLA AND/OR RLA) AND
For Geostationary	Longitude =	IF ANY SATELLITES ARE GEOSTATIONARY, REPORT
Nongeo)		
(City = Geo or		
(State = SPCE)		
Type of satellite	Type = Nongeo	GEOSTATIONARY OR NONGEOSTATIONARY
Type of setallite	XAD = XAD01 03G060B	CHOOSE EITHER:
Dimension (XAD)	BEAMWIDTH60,	XAD01 16G030B
Transmit Antenna	ANTENNA GAIN3,	ANTENNA GAIN AND 30 DEGREE BEAMWIDTH
Orientation (XAZ)	ANITENNA CAINI 2	NTIA FORMAT (XAD), EXAMPLE, FOR 16 DBI
Transmit Antenna	XAZ = EC	EC = EARTH COVERAGE
Tanananik Astro	VA7 FC	J = LINEAR POLARIZATION NB= NARROWBEAM
		T = RIGHT AND LEFT HAND CIRCULAR,
		L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR,
		S = HORIZONTAL AND VERTICAL,
Polarization (XAP)		V = VERTICAL,
Transmit Antenna	XAP = V	POLARIZATIONS INCLUDE: H = HORIZONTAL,
commanded off?		
can the beacon be		
a beacon mode,	No □	
If transmitter has	Yes □	
	_	STATIONS ARE VISIBLE.
		DURATIONS WHEN SUPPORTING GROUND
		SMALL SATELLITE IDENTIFICATION WHOSE TRANSMISSIONS ARE NOT LIMITED TO
mode?		WITH TRACKING, DOPPLER COMPENSATION, OR
have a beacon	No ⊠	TRANSMISSION THAT IS OFTEN USED TO ASSIST
Does transmitter	Yes □	BEACON MODE IS NORMALLY CONSIDERED A REGULAR AND PERIODIC SHORT DURATION

City Name (RAL)	RAL = HILLSBORO	
Latitude	Lat = 380645 NORTH	
(DDMMSS)		
Longitude (DDDMMSS)	Lon = 0801558 WEST	
Receive Antenna Polarization (RAP)	RAP = L	POLARIZATIONS INCLUDE: H = HORIZONTAL, V = VERTICAL, S = HORIZONTAL AND VERTICAL, L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION
Receive Antenna Orientation (RAZ)	RAZ = RAZ01 V05	THE EARTH STATION RECEIVER ANTENNA MINIMUM OPERATING ANGLE OF ELEVATION (RAZ), V00 TO V90, EXAMPLE, RAZ01 V00
Receive Antenna Dimensions (RAD)	ANTENNA GAIN2.5, BEAMWIDTH60, AZIMUTHAL RANGE000-360, THE SITE ELEVATION ABOVE MEAN SEA LEVEL IN METERS975 THE ANTENNA HEIGHT ABOVE TERRAIN IN METERS12 RAD = RAD01 02G060B000-360A00975H012	EXAMPLE ASSUMING NONGEOSTATIONARY, 16 DBI GAIN, 30 DEGREE BEAMWIDTH, AZIMUTHAL RANGE FROM 001-360, SITE ELEVATION OF 357 METERS, AND ANTENNA HEIGHT ABOVE TERRAIN OF 6 METERS: RAD01 16G030B001-360A00357H006
Receive Antenna Additional Information (For Parabolic Antennas)	ANTENNA DIAMETER, ANTENNA EFFICIENCY, Not parabolic	
Number of Satellite Contacts Supported Per Day	5	NUMBER OF TIMES THE SATELLITE WILL COMMUNICATE WITH THE EARTH STATION IN THE SPACE TO EARTH DIRECTION (DOWNLINKS) EACH DAY
Expected Duration of Each Contact	17 Minutes	AVERAGE DURATION OF EACH CONTACT
Supported Operations	Satellite Health and Status Data ⊠ Mission Payload Data ⊠	SATELLITE HEALTH AND STATUS TELEMETRY AND/OR MISSION PAYLOAD DATA
FCC notes: 1. Use S-Note	e S945.	

2. REM AGN, Cubesat, Varisat-1

Part B: Ground Stations, Earth to Space link data:

Earth Station Transmitter Data (Required for Each Frequency at Each Earth Station Location)

Transmit Frequency	Transmit Frequency:		
24.585 MHz			
24.5864 MHz			
24.687 MHz			
24.6884 MHz			
All data same for al	frequencies	,	
State (XSC)	XSC = WV		
City Name (XAL)	XAL = Hillsboro		
Latitude	Lat = 380645 NORTH		
(DDMMSS)			
Longitude	Lon = 0801558 WEST		
(DDDMMSS)			
Transmit Power	PWR = 200W	TRANSMIT POWER SUPPLIED TO THE ANTENNA	
(PWR)		INPUT TERMINAL, EXAMPLE, PWR01 W2 TRANSMIT POWER UNITS INCLUDE:	
		W = WATT,	
		K = KILOWATT, M = MEGAWATT	
Necessary	2.4 kHz	THE WIDTH OF FREQUENCY BAND WHICH IS JUST	
Bandwidth		SUFFICIENT TO SUCCESSFULLY TRANSFER DATA.	
Barrawraerr		FORMULAS CAN BE FOUND IN ANNEX J OF THE NTIA MANUAL.	
RF Emissions Data	N/A	2-SIDED EMISSION BANDWIDTH VALUES	
-3 dB bandwidth	,		
-20 dB bandwidth			
-40 dB bandwidth			
-60 dB bandwidth			
Modulation Type		THE METHOD USED TO SUPERIMPOSE DATA ON	
		THE CARRIER, EXAMPLE, BPSK, QPSK, GMSK.	
Data Rate		INFORMATION DATA RATE	
Forward Error	Is FEC used? Yes \square No \square		
Correction Coding	FEC Type:,		
	FEC Rate:,		
Total Symbol Rate		DATA RATE COMBINED WITH FEC AND FRAME OVERHEAD RESULTING IN THE TOTAL SYMBOL	
		RATE AT THE INPUTE TO THE SYMBOL	
		MAPPER/MODULATOR.	
Transmit Antenna	XAP = L	POLARIZATIONS INCLUDE: H = HORIZONTAL,	
Polarization (XAP)		V = VERTICAL,	
		S = HORIZONTAL AND VERTICAL,	
		L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR,	
		T = RIGHT AND LEFT HAND CIRCULAR,	
		J = LINEAR POLARIZATION	
Transmit Antenna	XAZ =	THE EARTH STATION TRANSMITTER ANTENNA MINIMUM OPERATING ANGLE OF	
Orientation (XAZ)	XAZ01 V05	ELEVATION (XAZ), V00 TO V90, EXAMPLE, XAZ01	
		V00	

Transmit Antenna Dimensions (XAD)	ANTENNA GAIN2.5, BEAMWIDTH60, AZIMUTHAL RANGE000-360, THE SITE ELEVATION ABOVE MEAN SEA LEVEL IN METERS975 THE ANTENNA HEIGHT ABOVE TERRAIN IN METERS12 XAD = XAD01 02G060B000-360A00975H012	EXAMPLE ASSUMING NONGEOSTATIONARY, 16 DBI GAIN, 30 DEGREE BEAMWIDTH, AZIMUTHAL RANGE FROM 001-360, SITE ELEVATION OF 357 METERS, AND ANTENNA HEIGHT ABOVE TERRAIN OF 6 METERS: XAD01 16G030B001-360A00357H006
Transmit Antenna Additional Information (For Parabolic	ANTENNA DIAMETER, ANTENNA EFFICIENCY, Not Parabolic	
Antennas) Number of Satellite Contacts Supported Per Day		NUMBER OF TIMES THE EARTH STATION WILL COMMUNICATE WITH THE STATELLITE IN THE EARTH TO SPACE DIRECTION (UPINKS) EACH DAY
Expected Duration of Each Contact		AVERAGE DURATION OF EACH CONTACT
Satellite Receive Sp	pecifications	
Receive Antenna Polarization (RAP)	RAP = V	POLARIZATIONS INCLUDE: H = HORIZONTAL, V = VERTICAL, S = HORIZONTAL AND VERTICAL, L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION
Receive Antenna Orientation (RAZ)	RAZ = EC	NB= NARROWBEAM EC = EARTH COVERAGE
Receive Antenna Dimension (RAD)	ANTENNA GAIN3 BEAMWIDTH60 RAD = RAD01 03G060B	NTIA FORMAT(RAD), EXAMPLE, FOR 16 DBI ANTENNA GAIN AND 30 DEGREE BEAMWIDTH RAD01 16G030B
Type of satellite (State = SPCE) City = Geo or Nongeo	Type = Nongeo	CHOOSE EITHER: GEOSTATIONARY OR NONGEOSTATIONARY
For Geostationary Satellites	Longitude =	IF ANY SATELLITES ARE GEOSTATIONARY, REPORT ITS LATITUDE AS 000000N (XLA AND/OR RLA) AND REPORT ITS LONGITUDE IN DDDMMSS FORMAT (XLG AND/OR RLG).

For Nongeostationary (Orbital Data)	INCLINATION ANGLE114, APOGEE IN KILOMETERS350, PERIGEE IN KILOMETERS200, ORBITAL PERIOD IN HOURS1AND FRACTIONS OF HOURS IN DECIMAL49, THE NUMBER OF SATELLITES IN THE SYSTEM, ORB = ORB,114IN00350AP00200PE001.49H02NRR01	IF ANY SATELLITES ARE NONGEOSTATIONARY, REPORT ITS INCLINATION ANGLE, APOGEE IN KILOMETERS, PERIGEE IN KILOMETERS, ORBITAL PERIOD IN HOURS AND FRACTIONS OF HOURS IN DECIMAL, THE NUMBER OF SATELLITES IN THE SYSTEM, THEN T01, EXAMPLE, REM04 *ORB,98.0IN00510AP00510PE001.58H01NRT01, AND FOR SPACE-TO-SPACE COMMUNICATIONS WITH ANOTHER NONGEOSTATIONARY SATELLITE ADD AN ADDITIONAL *ORB FOR IT ENDING IN R01, EXAMPLE, REM05 *ORB,72.9IN03209AP00655PE013.46H01NRR01
For SunSynchronous Nongeostationary Orbits	Mean Local Time of Ascending Node (MLTAN) = Not Sun Sync	MLTAN IS THE ANGLE BETWEEN AN ORBIT'S ASCENDING NODE AND THE MEAN SUN, OFTEN EXPRESSED AS UNIT OF TIME (HH:MM)