ERP Calculation

In this calculation, we report ERP relative to a theoretical half-wave dipole. We intend to use approximately 50 ft of Andrew LDF4-50A Heliax (http://www.rfparts.com/heliax_LDF450A.html) cable which attenuates 0.463 dB per 100 ft at 50 MHz. The system gains and losses are as follows:

• maximum antenna gain: 6.4 dBd

• cable loss: $0.00463 \, dB/ft \cdot 50 \, ft = 0.232 \, dB$

• connector loss: 0.03 dB ¹

From the standard definition of decibel

$$\Gamma dB = 10 dB \log_{10} \left(\frac{P_{ERP}}{P_{TPO}} \right) , \qquad (1)$$

we obtain the formula² to calculate ERP

$$P_{ERP} = P_{TPO} \ 10^{\Gamma/10} \,. \tag{2}$$

The net gain is $\Gamma = 6.4 - 0.232 - 0.03 = 6.14$ dB. With $P_{TPO} = 2000$ W the ERP is 8200 W.

¹We conservatively estimate 0.03 dB for our system. Various amateur radio forums and tutorials discuss RF connector losses ranging from 0.01 dB to 0.09 dB.

 $^{^{2}}P_{ERP}$ and P_{TPO} are Effective Radiated Power and Transmitter Power Output, respectively.