Orbital Debris Assessment for The CubeSats on the STP-2/ELaNa-XV Mission per NASA-STD 8719.14A

Signature Page

Into Tragon
Justin Treptow, Analyst, NASA KSC VA-H1
Scott Higginbotham, Mission Manager, NASA KSC VA-C
Jason Crusan, Program Executive, NASA HQ SOMD
Suzanne Aleman, NASA HQ OSMA MMOD Program Executive
Signatures Required for Final Version of ODAR
Terrence W. Wilcutt, NASA Chief, Safety and Mission Assurance
William Gerstenmaier, NASA AA, Human Exploration and Operations Mission Directorate.

John F. Kennedy Space Center, Florida

Kennedy Space Center, FL 32899

ELVL-2015-0044079

Reply to Attn of: VA-H1 February 4, 2016

TO: Scott Higginbotham, LSP Mission Manager, NASA/KSC/VA-C

FROM: Justin Treptow, NASA/KSC/VA-H1

SUBJECT: Orbital Debris Assessment Report (ODAR) for the ELaNa-XV Mission

REFERENCES:

A. NASA Procedural Requirements for Limiting Orbital Debris Generation, NPR 8715.6A, 5 February 2008

- B. Process for Limiting Orbital Debris, NASA-STD-8719.14A, 25 May 2012
- C. Higginbotham, Scott. "RE: Please confirm the mission launching ELaNa-15" 6 July 2015. E-mail.
- D. McKissock, Barbara, Patricia Loyselle, and Elisa Vogel. Guidelines on Lithiumion Battery Use in Space Applications. Tech. no. RP-08-75. NASA Glenn Research Center Cleveland, Ohio
- E. *UL Standard for Safety for Lithium Batteries, UL 1642.* UL Standard. 4th ed. Northbrook, IL, Underwriters Laboratories, 2007
- F. Kwas, Robert. Thermal Analysis of ELaNa-4 CubeSat Batteries, ELVL-2012-0043254; Nov 2012
- G. Range Safety User Requirements Manual Volume 3- Launch Vehicles, Payloads, and Ground Support Systems Requirements, AFSCM 91-710 V3.
- H. HQ OSMA Policy Memo/Email to 8719.14: CubeSat Battery Non-Passivation, Suzanne Aleman to Justin Treptow, 10, March 2014

The intent of this report is to satisfy the orbital debris requirements listed in ref. (a) for the ELaNa-XV auxiliary mission launching in conjunction with the STP-2 primary payload. It serves as the final submittal in support of the spacecraft Safety and Mission Success Review (SMSR). Sections 1 through 8 of ref. (b) are addressed in this document; sections 9 through 14 fall under the requirements levied on the primary mission and are not presented here.

The following table summarizes the compliance status of the ELaNa-XV auxiliary payload mission flown on STP-2. The 3 CubeSats comprising the ELaNa-XV mission are fully compliant with all applicable requirements.

Table 1: Orbital Debris Requirement Compliance Matrix

Requirement	Compliance Assessment	Comments
4.3-1a	Not applicable	No planned debris release
4.3-1b	Not applicable	No planned debris release
4.3-2	Not applicable	No planned debris release
4.4-1	Compliant	Minimal risk to orbital
		environment, mitigated by
		orbital lifetime.
4.4-2	Compliant	Minimal risk to orbital
		environment, mitigated by
		orbital lifetime.
4.4-3	Not applicable	No planned breakups
4.4-4	Not applicable	No planned breakups
4.5-1	Compliant	
4.5-2	Not applicable	
4.6-1(a)	Compliant	Worst case lifetime 4.1 yrs
4.6-1(b)	Not applicable	
4.6-1(c)	Not applicable	
4.6-2	Not applicable	
4.6-3	Not applicable	
4.6-4	Not applicable	Passive disposal
4.6-5	Compliant	
4.7-1	Compliant	Non-credible risk of human
		casualty
4.8-1	Compliant	No planned tether release
		under ELaNa-XV mission

Section 1: Program Management and Mission Overview

The ELaNa-XV mission is sponsored by the Space Operations Mission Directorate at NASA Headquarters. The Program Executive is Jason Crusan. Responsible program/project manager and senior scientific and management personnel are as follows:

ARMADILLO: Dr. E. Glenn Lightsey, Principle Investigator; Sean Horton, Project Manager

LEO: Dr. Jordi Puig-Suari, Principal Investigator, Andrew Blocher, Project Manager

StangSat: Tracey Beatovich Principal Investigator, Margaret Jennings, Project Manager

Program Mileston	ne Schedule
Task	Date
CubeSat Selection	October 2014
MRR	May 2016
Pre-Ship Review	June 2016
CubeSat Delivery to Cal Poly	July 2016
Launch	September 2016

Figure 1: Program Milestone Schedule

The ELaNa-XV mission will be launched as an auxiliary payload on the STP-2 mission on a Falcon 9 Heavy launch vehicle from Pad 39A at KSC, FL. The ELaNa-XV, will deploy 3 pico-satellites (or CubeSats). The CubeSat slotted position is identified in Table 2: ELaNa-XV CubeSats. The ELaNa-XV manifest includes: ARMADILLO, LEO, andStangSat. The current launch date is in (Sept 15, 2016). The (3) CubeSats will be ejected from a PPOD carrier attached to the launch vehicle, placing the CubeSats in an orbit approximately 300 X 860 km at inclination of 28.5 deg (ref. (c)).

Each CubeSat ranges in sizes from a 10 cm cube to 10 cm x 10cm x 30 cm, with masses from about 1 kg to 4 kg total. The CubeSats have been designed and universities and government agencies and each have their own mission goals.

Section 2: Spacecraft Description

There are three CubeSats flying on the ELaNa-XV. The CubeSats will be deployed out of 2 PPODs, as shown in Table 2: ELaNa-XV CubeSats below.

Table 2: ELaNa-XV CubeSats

PPOD Slot	CubeSat Quantity	CubeSat size	CubeSat Names	CubeSat Masses (kg)
A		3U (10 cm X 10 cm X 30 cm)	ARMADILLO	4.15
В	3	2U (10 cm X 10 cm X 20 cm)	LEO	1.9
C		1U (10 cm X 10 cm X 10 cm)	StangSat	0.77

The following subsections contain descriptions of these 3 CubeSats.

ARMADILLO – UNIVERSITY OF TEXAS – 3U

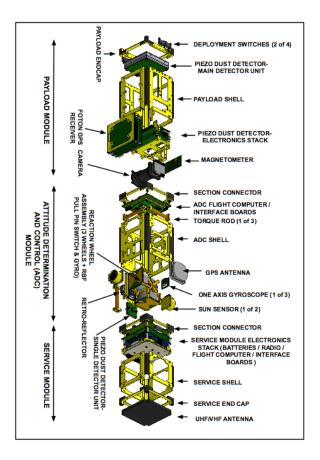


Figure 2: ARMADILLO Expanded View (Not Showing Solar Panels)

ARMADILLO will demonstrate the GPS Radio Occultation technique using a custom dual frequency GPS receiver and characterize the sub-millimeter space debris environment within the deployment orbit using a dedicated debris detector.

For this mission, the Texas Spacecraft Laboratory will utilize a software defined ground station to communicate with the spacecraft and downlink science data. The spacecraft uses the He-100 radio manufactured by Astronautical Development, LLC at uplink and downlink baud rates of 9600 and 19200 bps respectively.

Upon deployment, the spacecraft will wait for a period specified by the Launch Provider, then deploy its antennas and begin start up activities. These include detumble and transmission of the spacecraft's health beacon. After an initial checkout the spacecraft operators will schedule a daily occultation observation—in which the spacecraft's GPS antenna is pointed in the anti-velocity vector—and extended periods of observation with a debris detector pointed into the velocity vector. In conjunction with AMES Research Center, the spacecraft will also be occasionally pointed to a ground station for laser ranging experiments using a corner cube reflector. The primary mission will last at least 6 months, with extended operations continuing as long as the spacecraft is capable of doing so.

The primary CubeSat structure is made of 6061-T6 aluminum. It contains all standard commercial off the shelf (COTS) materials, electrical components, PCBs and solar cells.

There are no pressure vessels, hazardous or exotic materials.

The electrical power storage system consists of common lithium-ion 18650 cell batteries with over-charge/current protection circuitry. They are the GOMSpace, ApS NanoPower BP4 battery pack.

LEO - Cal Poly - 2U

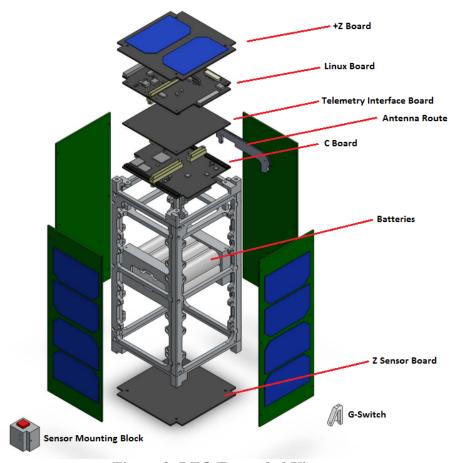


Figure 3: LEO Expanded View

LEO will record launch vehicle ascent vibrational and thermal environments with two accelerometers and a thermocouple and also record vibrational data taken by a second CubeSat (StangSat) that will be transferred through WiFi during ascent.

Immediately prior to deployment from the P-POD, LEO will turn off its WiFi module and upon deployment will take pictures of the StangSat CubeSat as they separate from the dispenser. 45 minutes after deployment the antenna will be deployed and the UHF beacon will be activated. For the first few passes the ground station operators will attempt communications to perform checkouts of the spacecraft. Data collected by the CubeSat will then be downlinked to the ground.

The CubeSat structure is made of Aluminum 6061-T6. It contains all standard commercial off the shelf (COTS) materials, electrical components, PCBs and solar cells.

There are no pressure vessels, hazardous or exotic materials.

The electrical power storage system consists of common lithium-ion batteries with over-charge/current protection circuitry.

StangSat - Merritt Island High School - 1U

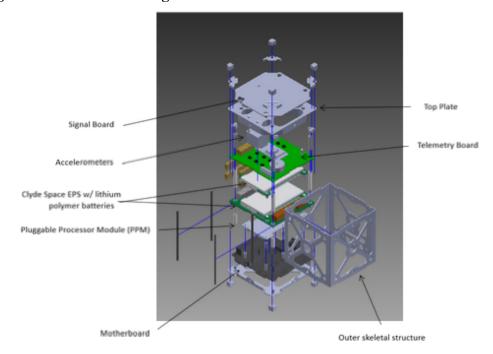


Figure 4: StangSat Expanded View

StangSat will record vibrational and shock measurements with two accelerometers located on the top plate shown above. This dynamic data will also be transmitted to our sister satellite LEO inside the PPOD over WiFi during launch.

Upon deployment from the P-POD, StangSat will be utilized as a ground reflective object. StangSat has no capability to and will not transmit to the ground after deployment

The CubeSat structure is made of Aluminum 6061-T6. The side and bottom plate contains all standard commercial off the shelf (COTS) materials, electrical components and "PCB clips" provided by Pumpkin (www.cubesatkit.com). The top plate which houses the accelerometers and signal board was custom machined and also made of Aluminum 6061-T6.

StangSat contains no pressure vessels, hazardous or exotic materials.

The electrical power storage system consists of Clyde Space procured lithium polymer batteries with over-charge/current protection circuitry included on the EPS module.

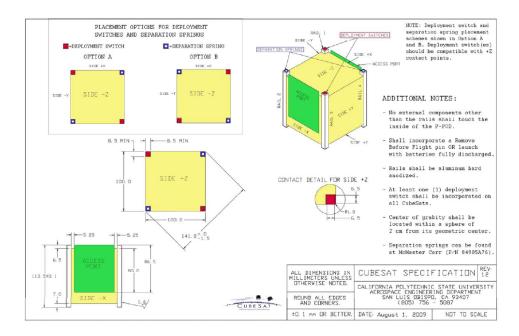


Figure 5: 1U CubeSat Specification

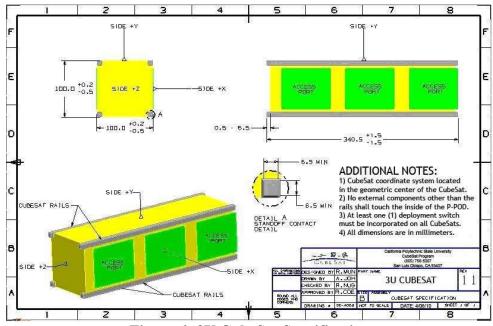


Figure 6: 3U CubeSat Specification

Section 3: Assessment of Spacecraft Debris Released during Normal Operations

The assessment of spacecraft debris requires the identification of any object (>1 mm) expected to be released from the spacecraft any time after launch, including object dimensions, mass, and material.

The section 3 requires rationale/necessity for release of each object, time of release of each object, relative to launch time, release velocity of each object with respect to spacecraft, expected orbital parameters (apogee, perigee, and inclination) of each object after release, calculated orbital lifetime of each object, including time spent in Low Earth Orbit (LEO), and an assessment of spacecraft compliance with Requirements 4.3-1 and 4.3-2.

No releases are planned on the ELaNa-XV CubeSat mission therefore this section is not applicable.

Section 4: Assessment of Spacecraft Intentional Breakups and Potential for Explosions.

There are NO plans for designed spacecraft breakups, explosions, or intentional collisions on the ELaNa-XV mission.

The probability of battery explosion is very low, and, due to the very small mass of the satellites and their short orbital lifetimes the effect of an explosion on the far-term low earth orbit environment is negligible (ref (h)).

The CubeSats batteries still meet Req. 56450 (4.4-2) by virtue of the HQ OSMA policy regarding CubeSat battery disconnect stating;

"CubeSats as a satellite class need not disconnect their batteries if flown in LEO with orbital lifetimes less than 25 years." (ref. (h))

Assessment of spacecraft compliance with Requirements 4.4-1 through 4.4-4 shows that with a lifetime of 4.1 years maximum the ELaNa-XV CubeSat is compliant.

Section 5: Assessment of Spacecraft Potential for On-Orbit Collisions

Calculation of spacecraft probability of collision with space objects larger than 10 cm in diameter during the orbital lifetime of the spacecraft takes into account both the mean cross sectional area and orbital lifetime.

The largest mean cross sectional area (CSA) among the three CubeSats is that of the ARMADILLO CubeSat (10 X 10 X 30 cm):

Mean CSA =
$$\frac{\sum Surface\ Area}{4} = \frac{[2*(w*l)+4*(w*h)]}{4}$$

Equation 1: Mean Cross Sectional Area for Convex Objects

$$Mean CSA = \frac{(A_{max} + A_1 + A_1)}{2}$$

Equation 2: Mean Cross Sectional Area for Complex Objects

All CubeSats evaluated for this ODAR are stowed in a convex configuration, indicating there are no elements of the CubeSats obscuring another element of the same CubeSats from view. Thus, mean CSA for all stowed CubeSats was calculated using Equation 1. This configuration renders the longest orbital life times for all CubeSats.

Once a CubeSat has been ejected from the P-POD and deployables have been extended Equation 2 is utilized to determine the mean CSA. A_{max} is identified as the view that yields the maximum cross-sectional area. A₁ and A₂ are the two cross-sectional areas orthogonal to A_{max} . Refer to Appendix A for dimensions used in these calculations

The ARMADILLO CubeSat has an orbit at deployment of 300 km perigee altitude by 860 km apogee altitude, with an inclination of 28.5 degrees. With an area to mass (4.15) kg) ratio of 0.009 m²/kg, DAS yields 4.1 years for orbit lifetime for its stowed state. Even with the variation in CubeSat design and orbital lifetime ELaNa-XV CubeSats see an average of 0.00000 probability of collision. ARMADILLO, with the largest cross sectional area will see the highest probability of collision of 0.00000. Table 4 below provides complete results.

There will be no post-mission disposal operation. As such the identification of all systems and components required to accomplish post-mission disposal operation, including passivation and maneuvering, is not applicable.

Table 3: CubeSat Orbital Lifetime & Collision Probability

2	d	S	tow	ved			
	Mean C/S Area (m^2)	Probability of collision (10^X)	Orbital Lifetime (yrs)	Area-to Mass (m^2/kg)	Mean C/S Area (m^2)	Mass (kg)	CubeSat
	0.039	0.00000	4.1	0.009	0.039	4.15	ARMADILLO
	0.025	0.00000 0.00000	2.8	0.013	0.025	1.9	LEO
	0.0174	0.00000	1.2	0.023	0.0174	0.77	StangSat

Deployed

Area-to Mass (m^2/kg)

0.009

0.013 2.8

0.023

4.1

Orbital Lifetime (yrs)

Probability of collision (10^xX)

0.00000

0.00000

0.00000

The probability of any ELaNa-XV spacecraft collision with debris and meteoroids greater than 10 cm in diameter and capable of preventing post-mission disposal is less than 0.00000, for any configuration. This satisfies the 0.001 maximum probability requirement 4.5-1.

Since the CubeSats have no capability or plan for end-of-mission disposal, requirement 4.5-2 is not applicable.

Assessment of spacecraft compliance with Requirements 4.5-1 shows ELaNa-XV to be compliant. Requirement 4.5-2 is not applicable to this mission.

Section 6: Assessment of Spacecraft Post-mission Disposal Plans and Procedures

All ELaNa-XV spacecraft will naturally decay from orbit within 25 years after end of the mission, satisfying requirement 4.6-1a detailing the spacecraft disposal option.

Planning for spacecraft maneuvers to accomplish post-mission disposal is not applicable. Disposal is achieved via passive atmospheric reentry.

Calculating the area-to-mass ratio for the worst-case (smallest Area-to-Mass) post-mission disposal among the CubeSats finds StangSat in its stowed configuration as the worst case. The area-to-mass is calculated for is as follows:

$$\frac{Mean \ C/_{S}Area \ (m^{2})}{Mass \ (kg)} = Area - to - Mass \ (\frac{m^{2}}{kg})$$

Equation 3: Area to Mass

$$\frac{0.0174 \, m^2}{0.77 kg} = 0.023 \frac{m^2}{kg}$$

Equation 4: Area to Mass Calculation of StangSat (Deployed)

StangSat has the smallest Area-to-Mass ratio and as a result will have the longest orbital lifetime. The assessment of the spacecraft illustrates they are compliant with Requirements 4.6-1 through 4.6-5.

DAS 2.0.2 Orbital Lifetime Calculations:

DAS inputs are: 300 km maximum perigee 860 km maximum apogee altitudes with an inclination of 28.5 degrees at deployment in September of 2016. An area to mass ratio of 0.009 m²/kg for the ARMADILLO CubeSat was imputed. DAS 2.0.2 yields a 4.1 year orbit lifetime for ARMADILLO in its stowed state.

This meets requirement 4.6-1. For the complete list of CubeSat orbital lifetimes reference.

Assessment results show compliance.

Section 7: Assessment of Spacecraft Reentry Hazards

A detailed assessment of the components to be flown on ELaNa-XV was performed. The assessment used DAS 2.0, a conservative tool used by the NASA Orbital Debris Office to verify Requirement 4.7-1. The analysis is intended to provide a bounding analysis for characterizing the survivability of a CubeSat's component during re-entry. For example, when DAS shows a component surviving reentry it is not taking into account the material ablating away or charring due to oxidative heating. Both physical effects are experienced upon reentry and will decrease the mass and size of the real-life components as the reenter the atmosphere, reducing the risk they pose still further.

The following steps are used to identify and evaluate a components potential reentry risk relative to the 4.7-1 requirement of having less than 15 J of kinetic energy and a 1:10,000 probability of a human casualty in the event the survive reentry.

- 1. Low melting temperature (less than 1000 °C) components are identified as materials that would never survive reentry and pose no risk to human casualty. This is confirmed through DAS analysis that showed materials with melting temperatures equal to or below that of copper (1080 °C) will always demise upon reentry for any size component up to the dimensions of a 1U CubeSat.
- 2. The remaining high temperature materials are shown to pose negligible risk to human casualty through a bounding DAS analysis of the highest temperature components, stainless steel (1500°C). If a component is of similar dimensions and has a melting temperature between 1000 °C and 1500°C, it can be expected to posses the same negligible risk as stainless steel components. See Table 4.

Table 4: ELaNa-VX Stainless Steel DAS Analysis

CubeSat	High Temp Components	Material	Mass (g)	Length / Diameter (mm)	Width (mm)	Height (mm)	Demise Alt (km)	KE (J)
ARMADILLO	Fasteners	Stainless Steel	15	3.05	2.54	1.67	71.1	-
ARMADILLO	Reaction Wheel	Stainless Steel	122	50	-	15	67.5	-
StangSat	Spacers	Steel	1	7	3	-	74.8	-
LEO	Fasteners	Stainless Steel	1	2.2	7.62	-	77.2	-
LEO	Antenna	Nickel Titanium	1	0.24	0.48	163	0	<1
LEO	G-Switch Mass	Stainless Steel	0.49	3.19	9.6	3.19	75.9	-
LEO	G-Switch Spring	Stainless Steel	0.02	2.26	11.23	2.26	77.9	-

The majority of stainless steel components demise upon reentry. The components that DAS conservatively identifies as reaching the ground have 1 or less joules of kinetic energy, far below the requirement of 15 joules. No stainless steel component will pose a risk to human casualty as defined by the Range Commander's Council. In fact, any injury incurred or inflicted by an object with such low energy would be negligible and wouldn't

require the individual to seek medical attention.

Through the method described above, Table 4: ELaNa-VX Stainless Steel DAS Analysis, and the full component lists in the Appendix all CubeSats launching under the ELaNa-XV mission are conservatively shown to be in compliance with Requirement 4.7-1 of NASA-STD-8719.14A.

Section 8: Assessment for Tether Missions

ELaNa-XV CubeSats will not be deploying any tethers.

ELaNa-XV CubeSats satisfy Section 8's requirement 4.8-1.

Section 9-14

ODAR sections 9 through 14 for the launch vehicle are addressed in ref. (g), and are not covered here.

If you have any questions, please contact the undersigned at 321-867-2958.

/original signed by/

Justin Treptow Flight Design Analyst NASA/KSC/VA-H1

cc: VA-H/Mr. Carney

VA-H1/Mr. Beaver VA-H1/Mr. Haddox VA-G2/Mr. Atkinson VA-G2/Mr. Marin SA-D2/Mr. Frattin SA-D2/Mr. Hale SA-D2/Mr. Henry Analex-3/Mr. Davis

Appendix Index:

Appendix A.ELaNa-XV Component List by CubeSat: ARMADILLOAppendix B.ELaNa-XV Component List by CubeSat: StangSatAppendix C.ELaNa-XV Component List by CubeSat: LEO

Appendix A. ELaNa-XV Component List by CubeSat: ARMADILLO

Demise	1	No	6.5	25	25	7.5	box	FR4 PCB, copper, various electronic components	3	Internal - Major	Gyroscopes
Demise	1	No	13	30.5	75	23.5	box	FR4 PCB, copper, various electronic components	1	Internal - Major	Magnetometer
Demise at 63.4 km Altitude	1500	Yes	ı	15	50	300	cylinder	Stainless Steel	ω	Internal - Major	Reaction Wheel - Wheel
Demise	1	No	29.5	50	50	369	box	Aluminum, Nitronic, Acetal, Samarium Cobalt, Stainless Steel	3	Internal - Major	Reaction Wheels
Demise	-	No	-	70	10	81.5	cylinder	Copper wire, magnetic alloy rod	3	Internal - Major	Magnetic Torque Rods
Demise	ı	No	15	88	94	90	box	FR4 PCB, copper, various electronic components	1	Internal - Major	EPS Board
Demise	1	No	20	88	94	240	box	Lithium-ion, FR4 PCB, aluminum	4	Internal - Major	Batteries
Demise	1	No	20	34	32	66.5	box	Aluminum, copper	2	External - Major	Sun Sensors
Demise		No	6.5	12	20	42.5	box	Thermoplastic acetal, copper, steel, silver plated bronze	5	External - Minor	Separation Switches
Demise	1	No	1.6	98	98	63	sheet	Germanium, glass, FR4 PCB, copper	5	External - Major	Solar Panels (short)
Demise	1	No	2.4	340.5	83	512	sheet	Germanium, glass, FR4 PCB, copper	4	External - Major	Solar Panels (long)
Demise		No	5.8	98	98	86	box	Aluminum, FR4 PCB, flex PCB	4	External - Major	Antennae System
Demise	1	No	340.5	113.5	113.5	1170	box (2.5 mm thick)	Aluminum 6061-T6511	ц	External - Major	CubeSat Structure
									1		ARMADILLO 3U CubeSat
Survivability	Melting Temp	High Temp	Height (mm)	Length (mm)	Diameter / Width (mm)	Mass (g) (total)	Body Type	Material	Qty	External/Internal (Major/Minor Components)	Name

Demise	ı	No	1			ı	,	Aluminum 6061	1	Exterior - Minor	Retro reflector bracket
Demise	ı	No	ı	6.1	7.16	3	cylinder	N-BK7 Optical Glass	1	Exterior - Minor	Retro reflector
Demise		No	13.54	50.8	50.8	74	box	6061-T6 ALUMINUM ALLOY BASE, COMPOSITE RADOME, IMPACT, ABRASION, UV, SOLVENT, SKYDROL RESISTANCE, AND FIRE RETARDANT	1	External - Major	GPS Antenna
Demise	-	No	35.56	82.67	96	350	box	FR4 PCB, copper, various electronic components	1	Internal - Major	FOTON
Demise	-	No	74	38	38	158.4	Rect. prism	-	1	Both-Major	Camera
Demise	-	No	36	50.8	81.3	86.4	box	FR4 PCB, copper	1	Internal - Major	PDD DCU
Demise	1	No	21	100	100	170.6	box	FR4 PCB, copper, aluminum	1	Internal - Major	PDD MDU
Demise	1	No	21	30	30	21.35	box	FR4 PCB, copper, aluminum	1	Internal - Major	PDD SDU
Demise	1	No	ı		1	150	•	Copper alloy	Many	Internal - Minor	Cabling
Demise at 71.1km Altitude	1500	Yes	1.67	3.05	2.54	150	box	Stainless steel	30	Internal - Minor	Fasteners
Demise	1	No	1	1	1	1	1	See items 21-25	1	Internal - Major	Piezo Dust Detector - Single Detector
Demise	1	No	12	57	65	10	box	FR4 PCB, copper, various electronic components	1	Internal - Minor	Hudson Interface Board
Demise	1	No	15	88	94	60	box	FR4 PCB, copper, various electronic components	1	Internal - Major	Kraken Interface Board
Demise	-	No	12	57	65	10	box	FR4 PCB, copper, various electronic components		Internal - Major	Horton Interface Board
Demise	1	No	15	88	94	60	box	FR4 PCB, copper, various electronic components	1	Internal - Major	Kesler Interface Board
Demise	1	No	8.5	58	70	30	box	FR4 PCB, copper, various electronic components	2	Internal - Major	phyCORE-LPC3250
Demise	•	No	13	88	94	68	box	FR4 PCB, copper, aluminum, various electronic components	1	Internal - Major	UHF/VHF Radio
Survivability	Melting Temp	High Temp	Height (mm)	Length (mm)	Diameter / Width (mm)	Mass (g) (total)	Body Type	Material	Qty	External/Internal (Major/Minor Components)	Name

Appendix B. ELaNa-XV Component List by CubeSat: LEO

Demise	-	No	0.75	535	10.18	-	Rectangular Prism	Copper alloy	Many	Internal - Minor	Cabling
Demise at 77.2 km Altitude	-	Yes	-	7.62	2.2	40	Cylinder	Stainless Steel 316L	Many	Internal - Minor	Fasteners
Demise	-	No	25	25	22	47.75	Box	Aluminum 6061	1	Internal - Major	Sensor Mounting Block
Demise		No	11.87	80.21	3.32	8.37	Rectangular Prism	Aluminum 6061	ъ	Internal - Major	G-Switch Mounting Bar
Demise		No	6.35	31.41	31.41	2.74	Cylinder	Delrin	1	Internal - Major	G-Switch Mounting Plate
Demise		No	19.5	21.83	5.5	1.3	Box	Delrin	ъ	Internal - Major	G-Switch Jaw
Demise at 77.9 km Altitude	-	Yes	2.26	11.23	2.26	0.02	Cylinder	Stainless Steel 302	1	Internal - Major	G-Switch Spring
Demise at 75.9 km Altitude	-	Yes	3.19	9.6	3.19	0.49	Cylinder	Stainless Steel 18-8	1	Internal - Major	G-Switch Mass
Demise	-	No	1.55	100	100	42.03	Rectangular Prism	Fiberglass	1	Internal - Major	Z Sensor Board
Demise		No	1.2	93.9	82.7	22.5	Rectangular Prism	Fiberglass	ъ	Internal - Major	C Board
Demise	1	No	1.2	93.9	82.7	22.5	Rectangular Prism	Fiberglass	ъ	Internal - Major	Linux Board
Demise	1	No	5.1	82.9	36	19.56	Rectangular Prism	Fiberglass	ъ	Internal - Major	Comm Board
Demise		No	1.67	87.82	85.57	50	Rectangular Prism	Fiberglass	ъ	Internal - Major	Telemetry Interface Board
Demise	-	No	52.5	82.2	82.05	28.22	Box	Aluminum 6061	1	Internal - Major	Battery Mount
Demise	-	No	38.66	65.75	73.53	383.4	Вох	Lithium Cobalt Oxide	2	Internal - Major	Batteries
Demise	-	No	8.1	8	2.35	0.28	Box	РВТ	1	External - Minor	Sep Switches
Demise	-	No	25.88	81.8	2.64	3.82	Rectangular Prism	Delrin	1	External - Minor	Antennae Route
Demise	-	No	1.55	219.1	82.7	66.72	Вох	Fiberglass	5	External - Major	SidePanels
Demise	-	No	0.45	69	40	35.78	Sheet	Germanium	16	External - Major	Solar Panels
Survives to ground with < 1J of energy		Yes	163	0.48	0.24	1	Rectangular Prism	Nickel Titanium	1	External - Major	Antennae
Demise	-	No	200	100.2	100.2	310	Вох	Aluminum 6061	1	External - Major	CubeSat Structure
									1		LEO
Survivability	Melting Temp	High Tem p	Height (mm)	Length (mm)	Diameter / Width (mm)	Mass (g)	Body Type	Material	Qty	External/Internal (Major/Minor Components)	Name

Appendix C. ELaNa-XV Component List by CubeSat: StangSat

Demise	1	Z o	ı	1	1	ū		Copper, Vinyl, Beryllium Copper, Gold-Plating	Ь	Internal - Minor	Cabling
Demise	1	No	10.8	21.6	25.4	22	Вох	Aluminum, Epoxy, Steel, Copper	ר	Internal - Minor	Accelerometer 2 (25G)
Demise	1	No	10.8	21.6	25.4	22	Вох	Aluminum, Epoxy, Steel, Copper	ъ	Internal - Minor	Accelerometer (100G)
Demise at 74.8 km Altitude	1500	Yes	3	1	7	31	Cylinder	Steel, Aluminum	4	Internal - Minor	Mounting Rod / Spacers
Demise	-	No				15	Вох	FR4, Steel	1	Internal - Minor	Wi-Fi Transmitter
Demise	1	No	1.61	99.15	99.14	40	Вох	FR4, Aluminum, Silicon, Nylon, Gold-Plated Brass	1	Internal - Major	Signal Board
Demise	1	No	35	90.4	96	84	Вох	FR4, Aluminum, Silicon, Nylon, Gold-Plated Brass, Glass-Filled Polyester, Phosphor Bronze, Gold Plating	1	Internal - Major	Telemetry Board
Demise	1	No	22	95	90	233	Вох	FR4, Aluminum, Silicon, Li- Polymer, Glass-Filled Polyester, Phosphor Bronze, Gold Plating	1	Internal - Major	Battery w/EPS board
Demise	-	No	1.6	89.5	54.6	21	Вох	FR4, Aluminum, Silicon, Glass- Filled Polyester, Phosphor Bronze, Gold Plating	1	Internal - Major	PPM w/ Fasteners
Demise	-	No	13.16	92.21	96.12	79	Вох	FR4, Steel, Nylon, Copper, Glass-Filled Polyester, Phosphor Bronze, Gold Plating	1	Internal - Major	Motherboard
Demise	-	No	113.6	105.3	105.15	218	Skeleton	Aluminum T6-6061	1	External - Major	Pumpkin External Structure
Demise	1					770			1		StangSat
Survivability	Melting Temp	High Temp	Height (mm)	Length (mm)	Diameter/ Width (mm)	Mass (g)	Body Type	Material	Qty	External/Internal (Major/Minor Components)	Name