EXHIBIT 1

Antenna #1 & #2 #1 - 4.6 Meter Andrews #2 - 2.4 Meter Prodolin

Femaney Islate	POWER			EMISSION	MODULATING	NECESSARY BANDW
(Δ)	(3)	(3)	0	(1)	(F)	0
11700 to				3K29GlW to	BPSK, Data	<u>3.29 to</u>
12200 MHz				3MOOG1W	BPSK, Data	3000
	•	1	<u>نان میں بر میں المال ہو</u> ۔	1K65G1W to	OPSK, Data	1.65 to
				3MOOG1W	OPSK, Data	3000
				3MOOG1E	Dig. Video	3000
				3MOOF 3W	SCPC	3000
	· · · · · · · · · · · · · · · · · · ·					
14000 to	0.03 to	40.2 to	Mean	3K29GIW to	BPSK, Data	3.29 to
14500 00	30.2 watts	69.8 dBw	Mean	3MOOG1W	BPSK, Data	3000
1	0.02 to	37.2 to	Mean	1K65G1W to	QPSK, Data	1.65 to
	30.2 vetts	69.8 dBw	Mean	3MOOG1W	QPSK, Data	3000
	30 2 vatte	69.8 dBw	Mean	3MOOG1F	Dig. Video	3000
	52 7 uptte	72 3 dBw	Mean	3MOOF 3W	SCPC	3000
	JJ.7 Walus	72.5 00%				

4G.

All Bandwidths calculated as follows:

$$BW = \frac{(\text{data rate}) \times (\text{filter spreading})}{\text{Ln (# of phases}) \times \text{FEC rate}}$$
Example: Data Rate = 2.4 Kbps
FEC Rate = 7/8
Filter Spreading = 1.2
Phases = 2
Ln = National Log

$$BW = \frac{(2.4) (1.2)}{\text{Ln (2) x .875}}$$
= 3.29 kHz

•

EXHIBIT 2

RADIATION HAZARD STUDY

.,*

ANALYSIS OF NON-IONIZING RADIATION FOR A 4.6 METER EARTH STATION

This report analyzes the non-ionizing radiation levels for a 4.6 meter earth station. The Office of Engineering and Technology Bulletin, No. 65, Edition 97-01, specifies that there are two separate tiers of exposure limits that are dependent on the situation in which exposure takes place and/or the status of the individuals who are subject to the exposure. The Maximum Permissible Exposure (MPE) limit for persons in a Uncontrolled/Public environment to non-ionizing radiation over a thirty minute period is a power density equal to 1 mW/cm**2 (one milliwatts per centimeter squared). The Maximum Permissible Exposure (MPE) limit for persons in a Controlled/Occupational environment to non-ionizing radiation over a six minute period is a power density equal to 5 mW/cm**2 (five milliwatts per centimeter squared). It is the purpose of this report to determine the power flux densities of the earth station in the far field, near field, transition region, between the subreflector and main reflector surface, at the main reflector surface, and between the antenna edge and the ground.

The following parameters were used to calculate the various power flux densities for this earth station:

Antenna Diameter, (D)	= 4.6 meters
Antenna surface area, (Sa)	= pi (D**2) / 4 = 16.62 m**2
Subreflector Diameter, (Ds)	= 61.0 cm
Area of Subreflector, (As)	= pi (Ds**2) / 4 = 2922.47 cm**2
Wavelength at 14.2500 GHz, (lambd	a) = 0.021 meters
Transmit Power at Flange, (P)	= 224.00 Watts
Antenna Gain, (Ges)	Antenna Gain at = 3.162E+05 14.2500 GHz = 55.0 dBi Converted to a Power Ratio Given By: AntiLog (55.0 / 10)
pi, (pi)	= 3.1415927
Antenna aperture efficiency, (n)	= 0.55

1. Far Field Calculations

The distance to the beginning of the far field region can be found by the following equation: (1) Distance to the Far Field Region, (Rf) = 0.60(D**2) / lambda = 603.1 m

⁽¹⁾ Federal Communications Commission, Office of Engineering & Technology, Bulletin No. 65, pp. 17 & 18.

The maximum main beam power density in the far field can be calculated as follows: (1)

On-Axis Power Density in the Far Field, $(Wf) = \frac{(GES) (P)}{4 (pi) (Rf^{**2})}$ = 15.50 W/m^*2 = 1.55 mW/cm^*2

2. Near Field Calculation

Power flux density is considered to be at a maximum value throughout the entire length of the defined region. The region is contained within a cylindrical volume having the same diameter as the antenna. Past the extent of the near field region the power density decreases with distance from the transmitting antenna.

The distance to the end of the near field can be determined by the following equation: (1)

Extent of near field, (Rn) = D**2 / 4(lambda) = 251.27 m

The maximum power density in the near field is determined by: (1)

Near field Power Density, $(Wn) = \frac{16.0(n)P}{pi(D**2)} mW/cm**2$

- = 29.65 W/m**2
- $= 2.97 \text{ mW/cm}^{*2}$

3. Transition Region Calculations

The transition region is located between the near and far field regions. As stated above, the power density begins to decrease with distance in the transition region. While the power density decreases inversely with distance in the transition region, the power density decreases inversely with the square of the distance in the far field region. The maximum power density in the transition region will not exceed that calculated for the near field region. The power density in the near field region, as shown above, will not exceed 2.97 mW/cm**2.

(1) IBID

4. Region Between Main Reflector and Subreflector

Transmissions from the feed horn are directed toward the subreflector surface, and are reflected back toward the main reflector. The energy between the subreflector and reflector surfaces can be calculated by determining the power density at the subreflector surface. This can be accomplished as follows:

Power Density at Subreflector, (Ws) = 2(P) / As = 153.30 mW/cm**2

5. Main Reflector Region

The power density in the main reflector region is determined in the same manner as the power density at the subreflector, above, but the area is now the area of the main reflector aperture:

Power Density at Main Reflector Surface, (Wm) = (2(P) / Sa)

- = 26.96 W/m**2
- $= 2.70 \text{ mW/cm}^{*2}$

6. Region between Main Reflector and Ground

Assuming uniform illumination of the reflector surface, the power density between the antenna and ground can be calculated as follows:

Power density between Reflector and Ground, (Wg) = (P / Sa)

1.35 mW/cm**2

Table 1

Summary of Expected Radiation Levels

Based on (5 mW/cm**2) MPE for Controlled Environment

Reg	gion	Cal Radiation	culated Level	Maximum (mW/cm**2)	Hazard Asse	ssment
1.	Far Field, (Rf)=	603.1	m	1.55	SATISFIES	ANSI
2.	Near Field, (Rn)	= 251.27	m	2.97	SATISFIES	ANSI
3.	Transition Regio Rn < Rt < Rf	n, (Rt)		2.97	SATISFIES	ANSI
4.	Between Main Ref and subreflector	lector		153.30	POTENTIAL	HAZARD
5.	Reflector Surfac	e		2.70	SATISFIES	ANSI
6.	Between Antenna and Ground			1.35	SATISFIES	ANSI

It is the applicants responsibility to ensure that the public and operational personnel are not exposed to harmful levels of radiation.

Table 2

•

Summary of Expected Radiation Levels

Based on (1 mW/cm**2) MPE for Uncontrolled Environment

Calculated Maximum						
Reg	gion	<u>Radiation</u>	Level	(mW/cm**2)	Hazard Asse	ssment
1.	Far Field, (Rf)=	= 603.1	m	1.55	POTENTIAL	HAZARD
2.	Near Field, (Rn)	= 251.27	m	2.97	POTENTIAL	HAZARD
з.	Transition Regio Rn < Rt < Rf	on, (Rt)		2.97	POTENTIAL	HAZARD
4.	Between Main Ref and subreflector	lector		153.30	POTENTIAL	HAZARD
5.	Reflector Surfac	e		2.70	POTENTIAL	HAZARD
6.	Between Antenna and Ground			1.35	POTENTIAL	HAZARD

It is the applicants responsibility to ensure that the public and operational personnel are not exposed to harmful levels of radiation.

.

7. Conclusions

Based on the above analysis, it is concluded that harmful levels of radiation will exist in all of the regions noted for the uncontrolled environment (Table 2).

The earth station is to be located on the roof of a building and access to the roof will be restricted to operations personnel. Therefore, public access to the regions noted in Table 2 will be restricted during operations to ensure public safety. Further, occupational exposure will be limited, and the transmitter will be turned off during maintenance so that the MPE standard of 5.0 mw/cm**2 will be complied with for those regions in close proximity to the reflector, and normally occupied by operating personnel.

EXHIBIT 3

RADIATION HAZARD REPORT

.

.

•

ANALYSIS OF NON-IONIZING RADIATION FOR A 2.4 METER EARTH STATION

This report analyzes the non-ionizing radiation levels for a 2.4 meter earth station. The Office of Engineering and Technology Bulletin, No. 65, Edition 97-01, specifies that there are two separate tiers of exposure limits that are dependent on the situation in which exposure takes place and/or the status of the individuals who are subject to the exposure. The Maximum Permissible Exposure (MPE) limit for persons in a Uncontrolled/Public environment to non-ionizing radiation over a thirty minute period is a power density equal to 1 mW/cm**2 (one milliwatts per centimeter squared). The Maximum Permissible Exposure (MPE) limit for persons in a Controlled/Occupational environment to non-ionizing radiation over a six minute period is a power density equal to 5 mW/cm**2 (five milliwatts per centimeter squared). It is the purpose of this report to determine the power flux densities of the earth station in the far field, near field, transition region, between the subreflector and main reflector surface, at the main reflector surface, and between the antenna edge and the ground.

The following parameters were used to calculate the various power flux densities for this earth station:

Antenna Diameter, (D)	= 2.4 meters
Antenna surface area, (Sa)	= pi (D**2) / 4 = 4.52 m**2
Feed Flange Diameter, (Df)	= 19.0 cm
Area of Feed Flange, (Fa)	= pi $(Df**2)/4$ = 283.53 cm**2
Wavelength at 14.2500 GHz, (lambd	a) = 0.021 meters
Transmit Power at Flange, (P)	= 2.00 Watts
Antenna Gain, (Ges)	Antenna Gain at $=$ 5.754E+04 14.2500 GHz $=$ 47.6 dBi Converted to a Power Ratio Given By: AntiLog (47.6 / 10)
pi, (pi)	= 3.1415927
Antenna aperture efficiency, (n)	= 0.55

1. Far Field Calculations

The distance to the beginning of the far field region can be found by the following equation: (1)

Distance to the Far Field Region, (Rf) = 0.60(D**2) / lambda= 164.2 m

⁽¹⁾ Federal Communications Commission, Office of Engineering & Technology, Bulletin No. 65, pp. 17 & 18.

The maximum main beam power density in the far field can be calculated as follows: (1)

On-Axis Power Density in the Far Field, $(Wf) = \frac{(GES) (P)}{4 (pi) (Rf**2)}$ = 0.34 W/m**2 = 0.03 mW/cm**2

2. Near Field Calculation

Power flux density is considered to be at a maximum value throughout the entire length of the defined region. The region is contained within a cylindrical volume having the same diameter as the antenna. Past the extent of the near field region the power density decreases with distance from the transmitting antenna.

The distance to the end of the near field can be determined by the following equation: (1)

Extent of near field, (Rn) = D**2 / 4(lambda) = 68.40 m

The maximum power density in the near field is determined by: (1)

Near field Power Density, (Wn) = $\frac{16.0(n)P}{pi(D**2)}$ mW/cm**2 = 0.97 W/m**2 = 0.10 mW/cm**2

3. Transition Region Calculations

The transition region is located between the near and far field regions. As stated above, the power density begins to decrease with distance in the transition region. While the power density decreases inversely with distance in the transition region, the power density decreases inversely with the square of the distance in the far field region. The maximum power density in the transition region will not exceed that calculated for the near field region. The power density in the near field region, as shown above, will not exceed 0.10 mW/cm**2.

(1) IBID

4. Region Between Feed Flange and Reflector

Transmissions from the feed horn are directed toward the reflector surface, and are confined within a conical shape defined by the feed. The energy between the feed and reflector surface can be calculated by determining the power density at the feed flange. This can be accomplished as follows:

Power Density at Feed Flange, (Wf) = 4(P) / Fa = 28.22 mW/cm**2

5. Main Reflector Region

The power density in the main reflector region is determined in the same manner as the power density at the feed flange, above, but the area is now the area of the reflector aperture:

Power Density at Reflector Surface, (Ws) = (4(P) / Sa)

= 1.77 W/m**2

 $= 0.18 \text{ mW/cm}^{*2}$

6. Region between Reflector and Ground

Assuming uniform illumination of the reflector surface, the power density between the antenna and ground can be calculated as follows:

Power density between Reflector and Ground, (Wg) = (P / Sa)

- = 0.44 W/m**2
- = 0.04 mW/cm*2

Table 1

٠

Summary of Expected Radiation Levels

Based on (5 mW/cm**2) MPE for Controlled Environment

Calculated Maximum Region Radiation Level (mW/cm**2) Hazard Assess						ssment
100	1011	<u>India de Lon</u>	10101	(1117) 0111 127	<u>indiata india</u>	
1.	Far Field, (Rf)=	: 164.2	m	0.03	SATISFIES	ANSI
2.	Near Field, (Rn)	= 68.40	m	0.10	SATISFIES	ANSI
3.	Transition Regic Rn < Rt < Rf	n, (Rt)		0.10	SATISFIES	ANSI
4.	Between Reflecto and feed	r		28.22	POTENTIAL	HAZARD
5.	Reflector Surfac	e		0.18	SATISFIES	ANSI
6.	Between Antenna and Ground			0.04	SATISFIES	ANSI

It is the applicants responsibility to ensure that the public and operational personnel are not exposed to harmful levels of radiation.

<u>Table 2</u>

Summary of Expected Radiation Levels

Based on (1 mW/cm**2) MPE for Uncontrolled Environment

Reg	gion	Cal <u>Radiation</u>	culated Level	d Maximum (mW/cm**2)	Hazard Asses	ssment
1.	Far Field, (Rf)=	= 164.2	m	0.03	SATISFIES	ANSI
2.	Near Field, (Rn))= 68.40	m	0.10	SATISFIES	ANSI
3.	Transition Regio Rn < Rt < Rf	on, (Rt)		0.10	SATISFIES	ANSI
4.	Between Reflecto and feed	or		28.22	POTENTIAL	HAZARD
5.	Reflector Surfac	ce		0.18	SATISFIES	ANSI
6.	Between Antenna and Ground			0.04	SATISFIES	ANSI

, , , ,

It is the applicants responsibility to ensure that the public and operational personnel are not exposed to harmful levels of radiation.

7. Conclusions

Based on the above analysis it is concluded that harmful levels of radiation will not exist in regions normally occupied by the public or the earth station's operating personnel. The transmitter will be turned off during antenna maintenance so that the ANSI Standard of 5.0 mW/cm**2 will be complied with for those regions with close proximity to the reflector that exceed acceptable levels.

Roof Mount

(Side View)

Ground Elevation (AMSL) = 6030 feet (1837.9 meters) [AMSL=Above Mean Sea Level, AGL=Above Ground Level]

Exhibit 4

Exhibit #5-Explanation of Government Contract as per question #7 of he 442 The satellite terminals described in this application are being used by The Mitre Corporation to conduct satellite communications research for the USAF. The focus of the effort is centered on the applicability of commercial satellite systems to USAF Operations under contract #F19628-99-C-001.

ć