Sportvision
Application for Special Temporary Authority
Description of Purpose of STA
Confirmation Number EL722240
File Number 0119-EX-ST-2012

Sportvision is in the process of developing, refining and testing a Race Track Wireless Data System, to provide data communications between vehicles in a race track and one or more fixed base stations installed along the track. One application of this system is a video image enhancement for television broadcasting of automobile racing events. The system allows television viewers to see displayed on screen the real-time location of cars during a racing event. The vehicles are equipped with GPS receivers and other sensors that generate a data packet every 200 milliseconds. The wireless system is responsible for collecting those packets from all rovers and delivering them to a control station in real time. A small amount of outbound data from the control station is sent to all the vehicles as well.

This STA has been issued in recent years. See, e.g. 0495-EX-ST-2011, WF9XDB.

The radio units to be installed at the base stations and rovers are identical. The radio itself is a direct sequence spread spectrum unit, using production radios for 2.4 GHz. The system may ultimately be deployed on an unlicensed basis in the 2.4 GHz band or elsewhere, but the high noise levels in that band in the test locations (commercial automobile race tracks) are unsuitable for development and testing of the product.

The application specifies test deployments at Indy Racing League (IRL) and NASCAR venues in the next six months. The venues for testing the product are initially automobile racing events. A complete list of the locations and coordinates for IRL events in the second half of 2011 is attached as a separate exhibit.

An Intersil baseband processor performs the Direct Sequence modulation and demodulation. It is part of a five-chipset developed for the 802.11b standard. It uses 1/4th of the standard 802.11 speed resulting in a narrow occupied RF bandwidth. The power supply generates 3.3 Volts to power all circuits of the board. The radio, including the power amplifier, amplifies the signal up to 30 dBm. Power measurement is active, and keeps the transmit power at the desired level. Transmitter output is programmable, from 0 to 28 dBm. The occupied bandwith (-20dBc) is 4.6 MHz.

The frequency band requested is allocated on a primary basis to the Amateur Radio Service. This is an exceptionally low-power system used over very short ranges within automobile racing tracks for short periods. Though it is not believed to have any significant interference potential, all test deployments of this system will be coordinated in advance with ARRL, the National Association for Amateur Radio, through its Technical Relations office in Fairfax, Virginia and its regulatory affairs office in Newington, Connecticut. Any complaint of interference from licensed radio amateurs

will result in cessation of operation until the interference is corrected. A list of events and dates and locations follows.

Begin				
Date	End Date	Location	Latitude	Longitude
2/13/2012	2/27/2012	Daytona	NL 29-11-11	WL 81-04-16
2/29/2012	3/5/2012	Phoenix	NL 33-22-29	WL 112-18-39
3/7/2012	3/12/2012	Las Vegas	NL 36-16-22	WL 115-00-39
3/14/2012	3/19/2012	Bristol	NL 36-30-55	WL 82-15-25
3/21/2012	3/26/2012	California	NL 34-05-18	WL 117-30-02
3/28/2012	4/2/2012	Martinsville	NL 36-38-01	WL 79-51-04
4/10/2012	4/15/2012	Texas	NL 33-02-08	WL 97-16-45
4/12/2012	4/16/2012	Rockingham	NL 34-58-26	WL 79-36-39
4/18/2012	4/23/2012	Kansas	NL 39-07-20	WL 94-49-59
4/24/2012	4/29/2012	Richmond	NL 37-35-07	WL 77-25-24
5/2/2012	5/7/2012	Talladega	NL 33-34-01	WL 86-03-59
5/8/2012	5/13/2012	Darlington	NL 34-17-43	WL 79-54-22
5/16/2012	5/21/2012	Iowa	NL 41-40-28	WL 93-00-53
5/15/2012	5/20/2012	Charlotte	NL 35-21-06	WL 80-41-01
5/23/2012	5/28/2012	Charlotte	NL 35-21-06	WL 80-41-01
5/30/2012	6/4/2012	Dover	NL 39-11-23	WL 75-31-50
6/5/2012	6/9/2012	Texas	NL 33-02-08	WL 97-16-45
6/5/2012	6/11/2012	Pocono	NL 41-03-08	WL 75-30-40
6/13/2012	6/18/2012	Michigan Road	NL 42-04-02	WL 84-14-26
6/19/2012	6/24/2012	America	NL 43-47-53	WL 87-59-16
6/20/2012	6/25/2012	Infineon	NL 38-09-43	WL 122-27-26
6/26/2012	7/1/2012	Kentucky	NL 36-16-28	WL 84-54-36
7/3/2012	7/8/2012	Daytona	NL 29-11-11	WL 81-04-16
7/11/2012	7/15/2012	Iowa	NL 41-40-28	WL 93-00-53
7/11/2012	7/16/2012	Loudon, NH	NL 43-21-46	WL 71-27-38
7/18/2012	7/23/2012	Chicago	NL 41-28-22	WL 88-03-39
7/24/2012	7/30/2012	Indianapolis	NL 39-47-24	WL 86-24-11
8/1/2012	8/5/2012	Iowa	NL 41-40-28	WL 93-00-53
8/1/2012	8/6/2012	Pocono	NL 41-03-08	WL 75-30-40
8/8/2012	8/13/2012	Watkins Glen	NL 42-20-24	WL 76-55-44