Attachment B

Exhibit 1

September 22, 2006

Mi: James Burtle
Chief, Experimental Licensing Branch
Office of Engineering and Technology
Federal Communications Commission
445 Twelfth Street, Southwest
Washington, D.C. 20554

Dear Mr. Burtle:
ICO Global Communications ("ICO") and Globalstar, Inc. ("Globalstar") submit this letter in support of an application for experimental special temporary authority for testing at earth stations in Brewster, Washington using frequencies in the $5 / 7 \mathrm{GHz}$ band.

Since 2000, ICO and Globalstar, Inc. have coordinated use of the $5 / 7 \mathrm{GHz}$ band to support feeder link operations of their 'respective non-geostationary satellite systems under an interim coordination agreement. ${ }^{1}$ By this letter, ICO and Globalstar confirm that the interim coordination agreement for sharing the $5150-5250 \mathrm{MFz}$ (uplink) band and the $6975-7075 \mathrm{MHz}$ (downlink) band, in which the gateway earth stations of these systems operate, remains in effect.

Please direct any questions regarding the above-referenced application to the undersigned.

Sincerely,

V.P., Legal and Regulatory Affairs Globalstar

[^0]
Exhibit 2

U.S. Department

MEMORANDUM

Mr. Karl B. Nebbia
Chairman, Interdepartment Radio Advisory Committee
National Telecommunication and
Information Administration
1401 Constitution Ave. NW
Washington, DC 20230
Subject: Coordination of ICO feeder link earth stations at Brewster, WA
Dear Mr. Nebbia:
In February 2002, the FAA received a request from ICO to coordinate their planned installation of a feeder link earth station in Brewster, WA. The coordination involved two meetings and discussion of analyses performed by ICO to determine the compatibility with existing and planned microwave landing system sites: The Brewster earth stations were successful coordinated, Recently, ICO coordinated with the FAA their request to renew their Federal Communications Commission (FCC) license. As a result of the successful coordination, the FAA had no objection to the FCC license renewal.

I would like to provide the documentation of the first coordination as information to the IRAC for the record. No action is being requested of the IRAC or National Telecommunications and Information Administration.

Please contact me at 202-493-4157 if you have any questions.
Sincerely,

Michael Richmond
FAA Representative
Enclosures (2)

MINUTES OF SECOND AND THIRD MEETINGS
 INTERFERENCE PROTECTION OF MLS SITES
 IN REGARD TO 5 GHz OPERATION OF
 USEI'S EARTH STATIONS AT BREWSTER, WASHINGTON WITH ICO SATELLITES

On February 1, 2000 and February 7, 2000, the below-listed representatives from U.S. Electrodynamics, Inc. ("USEI") and ICO Global Communications ("ICO") discussed with Federal Aviation Administration ("FAA") persomel the potential for harmful interference to existing operational and plamed installations of the acronautical radionavigation service microwave landing system (MLS) from the five transmit/receive earth station antennas at Brewster, Washington ("Brewster Satellite Access Node (SAN)"), which are to provide tracking, telemetry and command ("TT\&C") and feeder link communication noriers for the ICO medium Earth orbit satellite system.

In accordance with the Federal Communications Commission ("FCC") Order and Authorization of Jume 24, 1999, USE is required to demonstrate, prior to commencing operation of its antennas, that its operation will not cause interference to existing and planned MLS installations. A list of these sites is attached as Exhibit 1.

At these mectings, ICO presented a detailed analysis of interference from Brewster Satellite Access Node operations (single or aggregate carrier total EIRP of 81 dBW) into MLS receiver at aircraft landing al Moses Lake, Wenatchee and Pemberton (Canada), in order to assess if the ARINC 727 MLS "out of band" interference protection criterion of -55 dBm (in the range $5150-5250 \mathrm{MHz}$) would be respected. A copy of the 1 CO study describing the malysis and reviewed at each meeting is attached as Exhibit 2.

At the meetings, the FAA posed technical questions. The ICO staff responded to all of the queries by the second meeting. At the conclusion of the second meeting, the FAA folt that ICO had satisfactorily demonstrated that harmful interference would not be caused to the MLS stations of concern.

Under the worst case scenario, ICO demonstrated the following: (1) the maximum worst case interference level to MLS receivers on aircraf landing at Mosen Lake is -74.5 dBm ; (2) the maximum worst case interference level to MLS receivers on arcraft landing at Wenatchee is -62.4 dBm ; and (3) the Brewster Satellite Access Node would not have the visibility of aircran operating ML.S and landing at Pemberton (Canada).

It was agreed among the parties to the meeting that:
(1) The FAA considered that Brewster Satellite Access Node operations, within the parameters as described by ICO and USEI, would not camse interference concems with respect to the existing and planed MLS operations in Washington Statc and Pemberton (Canada).
(2) The FAA agreed to notify NTIA and the FCC that the Brewster Satellite Access Node 5 GHz emissions in the band $5150-5250 \mathrm{MHz}$, operating up to an aggregate total EIRP of $81 \mathrm{dBW}, \mathrm{SAN}$ minimum elevation angle of 5 degrees, SAN circular polarization and SAN antenna radiation pattern
complying with ITU-R Rec. S.580, would not cause harmful interference to MLS operations to the sel of existing and planned MLS installations in Washington State and Pemberton Canada.
(3) USEL and ICO would prepare these Draft Meeting Minutes for circulation to all the participants for their comments.

Exhibits
Attendees: (1) Michael Richmond, FAA
(2) Robert Frazier, FAA
(3) Tom Christein, FAA
(4) Fred Neudecker, FAA.
(5) Tony Azzarelli, ICO
(6) Jeffrey Binckes, ICO
(7) Kumar Singarajah, ICO**
(8) Willian Coulter, USEI*
(9) Elizabeth Holowinski, USEI

[^1]EXHIEIT 1

MLS Station	Geographic Coordinates	Particulars of Operation
Wenatchee, WA	$47^{\circ} 24^{\prime} 00^{\prime \prime} \mathrm{N}, 120^{\circ} 12^{\prime} 00^{\prime \prime} \mathrm{W}$	MLS @ Runway 30; Runway length 5500 ft ; Alrport elevation 1249' above mean sea level ("amsl"); Antenna oriented 315° True North
Moses Lake, WA	$\begin{aligned} & 47^{\circ} 13^{\prime} 43^{\prime \prime} \mathrm{N}, 119^{\circ} 19^{\prime} 41^{\prime \prime} \mathrm{W} \\ & 47^{\circ} 11^{\prime} 36^{\prime \prime} \mathrm{N}, 119^{\circ} 18^{\prime} 34^{\prime \prime} \mathrm{W} \end{aligned}$	ActiveMLS@Runway 32R; Runway length $13,503 \mathrm{ft}$; Airport elevation 1185^{\prime} amsi; Anterna oriented 162° True N^{2} +h
Seatte, WA	$47^{\circ} 27^{\prime} 42^{\prime \prime} \mathrm{N}, 122^{\circ} 17^{\prime} 34^{\prime \prime} \mathrm{W}$	Not avallable
Bellingham, WA	$\begin{aligned} & 48^{\circ} 47^{\prime} 09^{\prime \prime} N, 122^{\circ} 32^{\prime} 11^{\prime \prime} W \\ & 48^{\circ} 48^{\prime} 18^{\prime \prime} N, 122^{\circ} 32^{\prime} 15^{\prime \prime} W \end{aligned}$	Active MLS @ Runway 34; Runway length 6751 fti Airport elevation 166^{\prime} amsl; Antenna oriented 180° True North
McChord, WA	$\begin{aligned} & 47^{\circ} 08^{\prime} 18^{\prime \prime} N_{1} 122^{\circ} 28^{\prime} 36^{\prime \prime} W \\ & 47^{\circ} 07^{\prime} 36^{\prime \prime} N, 122^{\circ} 28^{\prime} 28^{\prime \prime} W \end{aligned}$	Transportable military system; A cylindrical coverage volume is assumed
Pullman, WA	$\begin{aligned} & 46^{\circ} 44^{\prime} 26^{\prime \prime} N, 117^{\circ} 07^{\prime} 08^{\prime \prime} W \\ & 46^{\circ} 44^{\prime} 34^{\prime \prime} N, 117^{\circ} 06^{\prime} 38^{\prime \prime} W \end{aligned}$	Planned MLS @ Runway 23: Runway length 6731 ft; Airport elevation 2551' amsl; Antenna oriented 70° True North
Portland, OR	$\begin{aligned} & 45^{\circ} 34^{\prime} 52^{\prime \prime} N, 122^{\circ} 35^{\prime} 09^{\prime \prime} \mathrm{W} \\ & 45^{\circ} 35^{\prime} 55^{\prime \prime} \mathrm{N}, 122^{\circ} 37^{\prime 5} 50^{\prime \prime} \mathrm{W} \end{aligned}$	Not available
Pemberton, Canada	$50^{\circ} 18^{\prime} 28^{\prime \prime} \mathrm{N}, 122^{\circ} 46^{\prime} 30^{\prime \prime} \mathrm{W}$	Not available

ANNEX 1 : BREWSTER - MOSES LAKE

- Interference Geometry - Real Case
- Interference Geonntry - Worst Calculation Case
pg 2
- ARINC 727 Interference Specifications
- Worst Calculation Case - As per Communication
- Worst Calculation Case - Modified
- Worst Calculation Case - Real Case
- Ameliorating Factors
- Interference At Approach Path
- Brewster - Moses Lake Map
pg 5
pg 6
pg 7
pg 8 pg 9
pg 3
pg 4
pg 10

Interference Geometry - Real Case

Interference Geometry - Worst Calculation Case

ARINC 727 Interference Specifications

ARINC 727 page 3.16

Page 4 Conidential \& Propritary to 160 Global Communications

Worst Calculation Case As per Communication

* TT\&C Emergency Mode SAN Peak EIRP
* Plane Elevation Angle from Brewster
* Worst Case SAN Off-Axis Angle to Plane (θ)
* SAN Antenna Gain toward plane
* SAN Peak Gain
* Gain Differential
* EIRP toward plane
* Free Space Path Loss (106 km)
* MLS antenna Gain
* Polarization Advantage
*Worst Case Total Interference Power at Antenna Output
* Interference Threshold level
* Margin

Page 5 | Confidential \& Proprietary to ico Global Communications

$$
\begin{aligned}
& =81 \mathrm{dBW} \\
& =2.76 \text { degrees } \\
& =5.0-2.76=2.24 \text { degrees } \\
& =29-25 \log (\theta)=20.25 \mathrm{~dB} \\
& =50.3 \\
& =50.3-20.25=30.05 \mathrm{~dB} \\
& =81-30.05 \mathrm{dBW}=50.95 \mathrm{dBW} \\
& =-147.11 \mathrm{~dB} \\
& =0 \mathrm{dBi} \\
& =-1 \mathrm{~dB} \\
& =-97.15 \mathrm{dBW} \\
& \text { or } \quad=-67.15 \mathrm{dBm} \\
& =55 \mathrm{dBm}
\end{aligned}
$$

$=12.15 \mathrm{~dB}$

Worst Calculation Case Modified

* TT\&C Emergency Mode SAN Peak EIRP
* Plane Elevation Angle from Brewster
* Worst Case SAN Off-Axis Angle to Plane (θ)
* SAN Antenna Gain toward plane
* SAN Peak Gain
* Gain Differential
* EIRP toward plane
$=81 \mathrm{dBW}$
$=2.55$ degrees
$=5.0-2.76=2.45$ degrees
$=29-25 \log (\theta)=19.3 \mathrm{~dB}$
$=50.3$
$=50.3-19.3=31.0 \mathrm{~dB}$
$=81-31.0 \mathrm{dBW} \quad=50.0 \mathrm{dBW}$
* MLS antenna Gain
$=-1 \mathrm{~dB}$
*Worst Case Total Interference Power at Antenna Output
* Interference Threshold level
* Margin
$=13.27 \mathrm{~dB}$
Page $6 \mid$ Contidential \& Proprietary to :CO Global Communitations |
$=-98.27 \mathrm{dBW}$
or $\quad=-68.27 \mathrm{dBm}$
$=-55 \mathrm{dBm}$
*Free Space Path Loss $(106 \mathrm{~km})=20 \log (4 \pi 5.2 / 0.3 * 106000)=$
$=-147.27 \mathrm{~dB}$

$$
=0 \mathrm{dBi}
$$

* Polarization Advantage

Worst Calculation Case Real Case

* TT\&C Emergency Mode SAN Peak EIRP
* Plane Elevation Angle from Brewster
* Worst Case SAN Off-Axis Angle to Plane (θ)
* SAN Antenna Gain toward plane
* SAN Peak Gain
* Gain Differential
* EIRP toward plane
$=81 \mathrm{dBW}$
$=3.42$ degrees
$=5.0-3.42=1.58$ degrees
$=29-25 \log (\theta)=15.65 \mathrm{~dB}$
$=50.3$
$=50.3-15.65=34.65 \mathrm{~dB}$
$=81-34.65 \mathrm{dBW} \quad=46.35 \mathrm{dBW}$
*Free Space Path Loss $(143 \mathrm{~km})=20 \log (4 \pi 5.2 / 0.3$ *143000 $)=$
$=-149.87 \mathrm{~dB}$
* MLS antenna Gain
* Polarization Advantage
*Worst Case Total Interference Power at Antenna Output

$$
=-104.52 \mathrm{dBW}
$$

* interference Threshold level
* Margin
$=19.52 \mathrm{~dB}$

$$
\text { or } \quad=-74.52 \mathrm{dBm}
$$

$$
=-55 \mathrm{dBm}
$$

Ameliorating Factors

Why Worst Case?

* TT\&C Emergency is normally used during launch phase and in emergency only cases, l.e. when there is a state of satellite being lost. Normal Cases $\mathrm{TT} \& \mathrm{C}=66 \mathrm{dBW}$.
* The SAN antennas will be moving with the moving satellites, hence the \% time that the antenna will be pointing toward the Moses Lake direction and near the 5 degrees minimum elevation will be much much less than 1% of the time
* The Terrain will block SAN emissions when plane is approaching Moses Lake run-way. From simulations this will happen at plane-runway distance of about 12 km . in such cases the interfering signal level will be many dBs below the line of sight interference level.
* As the plane approaches the run-way and descends, the minimum SAN off-axis angle will increase, hence the interference level toward the plane will decrease (see simulations).
* MLS Receive Wanted Siync' 'evel increases by 6 dB for every halving of plane-runway distance as plane is approaching to run-way.

Page 8 Confidential \& Proprietary to tco Gobat Communications in

Interference At Approach Path

SAN Interference - Free Space Pat¹ Loss

Brewster - Moses Lake Map

Page 10 Confidential \& Proprietary to ICO Global Communications

ANNEX 2: BREWSTER - WENATCHEE

- Landing Scenarios
- Brewster - Wanatchee Map
- SAN - Plane Link Geometry at Worst Case
- SAN-Plane Worst Case Interference
- Interference Calculation from Brewster to MLS Receiver Landing at Wenatchee
- Terrain Blockage
- Worst Case Vertical Profile for Link 2
- Worst Case Vertical Profile for Link 3
- Worst Case Vertical Profile for Link 4
- Link 2B at Terrain Blockage
- Link 3B at Terrain Blockage
- Link 4B at Terrain Blockage

Landing Scenarios

Plane $40 \mathrm{deg}=$ plane landing 40 deg off runway axis

Calculation of Interference

Here it is shown:

1. The geometry of the landing paths at Wenatchee with respect to Brewster.
2. The worst case interference scenario on page 15 and 16.
3. The interference level from the SAN antenna at the point of the hypothetical landing paths on page 17 . In reality the SAN will never be pointing at the plane, but instead will follow an ICO satellite. When this happens the SAN will start at 5° minimum elevation angle and then will be moving with the satellite with a angular velocity between $1^{\circ} /$ minute to 1.25% minute. The angle between the SAN antenna boresight and the plane landing will hence have an angular velocity which is greater than the one given above since now there also exist the movement of the plane landing at the airport.
4. The rest of the plots are supporting material for this Annex.

Brewster - Wanatchee Top View Map

SAN - Plane Link Geometry at Worst Case

The following geometrical link characteristics are at the worst case point, which correspond to the position when the plane is at its highest altitude (6 km AMSL) and at the edge of the MLS coverage volume (see page 12 and 14).

Link	Link Number	Azimuth (${ }^{\circ}$) from SAN	Elevation E $\left(^{\circ}\right)$ from SAN	Range (km) from SAN
SAN to Wanatchee	1	204.4	-0.4 (below Horizon)	91.1
SAN to Plane 0deg	2	185.8	2.41	110.4
SAN to Plane 20deg	3	182.0	2.79	99.2
SAN to Plane 40deg	4	180.0	3.33	86.4

Worst Case defned when plane is at Edge of the MLS Coverage Volume, Height of 6000 m and Distance uf 37 km .

SAN-Plane Worst Case Interference

Below are the interference values from the SAN at Brewster in the Worst Case position for planes at the edge of the MLS coverage volume (see page 12 and 14). As the plane lands these values will be reduced (see page 17).

Link Number	$\begin{aligned} & \text { EIRP } \\ & (\mathrm{dBW}) \end{aligned}$	ΔG (dB)	Lp (dB)	Grx (dBi)	Pol Adv. (dB)	$\stackrel{I}{(\mathrm{dBW})}$
2	81	-31.6	-147.6	0	-1	-99.2
3	81	-29.9	-146.7	0	-1	-96.6
4	81	-26.9	-145.5	0	-1	-92.4
$\begin{aligned} & \Delta \mathrm{G}=29-25 \log (\theta)-\text { Gpeak } \\ & \theta=5^{\circ}-\varepsilon \end{aligned}$						

Interference Calculation from Brewster to MLS Receiver Landing at Wenatchee

Below are calculations results for the cases depicted on page 12 and 14. These show that at the landing path (assumed as a straight line), due to the lower plane elevation from the SAN, the interference reduces as sito.in up until when the Terrain Blockage kicks in where then the interference will be much much less than the line of sight free space interference.

Worst Case Interference from Brewster SAN to MLS

Plane 0 deg

Plane 20 deg
Plane 40 deg
SAN - Plane Range (km)

Terrain Blockage

At the landing paths (see page 19, 20 and 21) as the height AMSL reduces and also the elevation angle from the SAN reduces, the interference level reduces with respect to the worst case (see page 16), since the angle between the SAN antenna boresight and the plane increases and hence the SAN antenna gain discrimination increases.

At a certain point in the landing path the Terrain will block the SAN-Plane line of sight link as shown on page 21,22 and 23 . Below are the interference values just before this happens (also see graph on page 17).

Link Number	Plane Height at Blockage	Plane Distance to Wanatchee	Interference Level at MLS Before Blockage (see previous page)
2	3600 m	28 km	$\mathbf{- 1 0 1 . 1 \mathbf { ~ d B W }}$
3	4100 m	24 km	$\mathbf{- 1 0 0 . 4} \mathbf{~ d B W}$
4	4400 m	23 km	$\mathbf{- 1 0 0 . 0} \mathbf{~ \mathbf { U B W }}$

Link Plots At Edge of MLS Coverage Volume

Following are Vertical Plots of the links at the Edge of the MLS coverage volume. These corresponds when the planes are at 6000 m AMSL and at about 37 km frcm the run-way. These plots also show the terrain cut from the SAN to plane and from the airport to the plane.

Wexantcisee to pratuc 20 deg

$\frac{\boxed{0}}{6}$
空
Buewnter SAN－1 to plame 40 aleg
再

pleare 40 cteg
にO

Link Plots When the SAN-Plane Link Gets Blocked by Terrain

Following are Vertical Plots of the SAN-Plane links when it gets blocked by the terrain between the SAN and the airplane. The point of terrain blockage is near the SAN (about $12-15 \mathrm{~km}$) as can be seen from the following three figures.

The plane is already inside the MLS coverage volume, since it is already descending and its respective height AMSL and distance from the airport are reported on page 18.

Page 24 Confidential \& Proprietary to 100 Gwbat Communications $\}$ Simulation Toof : Visuatysem V3 Professionat
OI
)

Link 4B at Terrain Blockage

Page 26 | Confidential \& Proprietary to lCo Giobal Communications \mid Simulation Tool : Visualyse ${ }^{\text {TM }} \vee 3$ Protessional

ANNEX 3 : BREWSTER - PEMBERTON (CANADA)

Page 28 Confidential \& Proprietary to 3 CO Gtobal Communications ICO Proprietary Software

Exhibit 3

FREQUENCY COORDINATION AND INTERFERENCE ANALYSIS REPORT

Prepared for
ICO Global Communications
BREWSTER, WA
Satellite Earth Station

Prepared By: COMSEARCH

Ashburn, VA 20147
September 28, 2006

TABLE OF CONTENTS

1. CONCLUSIONS 3
2. SUMMARY OF RESULTS 4
3. SUPPLEMENTAL SHOWING 5
4. EARTH STATION COORDINATION DATA 6
5. CERTIFICATION 10

1. CONCLUSIONS

An interference study considering all existing, proposed and prior coordinated microwave facilities within the coordination contours of the proposed earth station demonstrates that this site will operate satisfactorily with the common carrier microwave environment. Further, there will be no restrictions of its operation due to interference considerations.

2. SUMMARY OF RESULTS

A number of great circle interference cases were identified during the interference study of the proposed earth station. Each of the cases, which exceeded the interference objective on a line-of-sight basis, was profiled and the propagation losses estimated using NBS TN101 (Revised) techniques. The losses were found to be sufficient to reduce the signal levels to acceptable magnitudes in every case.

The following companies reported potential great circle interference conflicts that did not meet the objectives on a line-of-sight basis. When over-the-horizon losses are considered on the interfering paths, sufficient blockage exists to negate harmful interference from occurring with the proposed transmit-only earth station.

Company

Spokane Television Inc./KXLY-TV

No other carriers reported potential interference cases.

3. SUPPLEMENTAL SHOWING

Pursuant to Part 25.203(c) of the FCC Rules and Regulations, the satellite earth station proposed in this application was coordinated by Comsearch using computer techniques and in accordance with Part 25 of the FCC Rules and Regulations.

Coordination data for this earth station was sent to the below listed carriers with a letter dated 09/13/2006.

Company

APPLE VALLEY BROADCASTING INC.
Fisher Broadcasting - Seattle TV, LLC
KING BROADCASTING COMPANY - KREM
KIRO TV, INC
MOUNTAIN LICENSES, L.P.
SPOKANE SCHOOL DISTRICT \#81
SPOKANE TELEVISION INC./KXLY-TV
Tribune Television Northwest, Inc.

4. EARTH STATION COORDINATION DATA

This section presents the data pertinent to frequency coordination of the proposed earth station that was circulated to all carriers within its coordination contours.

COMSEARCH

Earth Station Data Sheet

19700 Janelia Farm Boulevard, Ashburn, VA 20147
(703)726-5500 http://www.comsearch.com

Coordination Values	BREWSTER, WA
Licensee Name	ICO Global Communications
Latitude (NAD 83) 48	$48^{\circ} 8^{\prime \prime} 47.2^{\prime \prime} \mathrm{N}$
Longitude (NAD 83)	$119^{\circ} 42^{\prime} 3.7^{\prime \prime} \mathrm{W}$
Ground Elevation (AMSL) 3	382.8 m/1255.9 ft
Antenna Centerline (AGL)	$4.88 \mathrm{~m} / 16.0 \mathrm{ft}$
Antenna Model N	NEC 7.6 Meter
Antenna Mode	Transmit 2.0 GHz
Interference Objectives: Long Term	$m \quad-154.0 \mathrm{dBW} / 4 \mathrm{kHz} \quad 20 \%$
Short Term	m $\quad-131.0 \mathrm{dBW} / 4 \mathrm{kHz} \quad 0.0025 \%$
Max Available RF Power	-34.9 (dBW/4 kHz)

Transmit 2.0 GHz

Azimuth $\left({ }^{\circ}\right)$	Horizon Elevation $\left({ }^{\circ}\right)$	Antenna Discrimination $\left({ }^{\circ}\right)$	Horizon Gain (dBi)	Coordination Distance (km)
0	0.00	69.62	8.00	235.00
5	0.00	65.27	8.00	235.00
10	0.00	60.97	8.00	235.00
15	0.00	56.73	8.00	235.00
20	0.00	52.58	8.00	235.00
25	0.00	48.54	8.00	235.00
30	0.00	44.65	8.00	235.00
35	0.00	40.94	8.00	235.00
40	0.00	37.47	8.00	235.00
45	0.00	34.32	9.50	235.00
50	0.00	31.59	9.50	235.00
55	0.00	29.40	9.50	235.00
60	0.00	27.87	9.50	235.00
65	0.00	27.11	9.50	235.00
70	0.00	27.20	9.50	235.00
75	0.00	28.12	9.50	235.00
80	0.00	29.80	9.50	235.00
85	0.00	32.12	9.50	235.00
90	0.00	34.94	9.50	235.00
95	0.00	38.16	9.50	235.00
100	0.00	41.69	9.50	235.00
105	0.00	45.44	9.50	235.00
110	0.00	49.37	9.50	235.00
115	0.00	53.43	9.50	235.00
120	0.00	57.60	9.50	235.00
125	0.00	61.85	9.50	235.00
130	0.00	66.16	9.50	235.00
135	0.00	70.52	9.50	235.00
140	0.00	74.92	9.50	235.00
145	0.00	79.34	9.50	235.00
150	0.00	83.78	23500	
155	0.00	88.23	9.50	235.00
160	0.00	92.69	9.50	235.00
165	0.00	97.13	9.50	235.00
170	0.00	101.57	935.00	
175	0.00	105.99	9.50	235.00
180	0.00	110.38	9.50	235500
185	0.00	114.73	9.50	235.00

COMSEARCH

Earth Station Data Sheet

19700 Janelia Farm Boulevard, Ashburn, VA 20147
(703)726-5500 http://www.comsearch.com

Coordination Values	BREWSTER, WA
Licensee Name	ICO Global Communications
Latitude (NAD 83)	$48^{\circ} 8^{\prime \prime} 47.2^{\prime \prime} \mathrm{N}$
Longitude (NAD 83)	$119^{\circ} 42^{\prime} 3.7{ }^{\prime \prime} \mathrm{W}$
Ground Elevation (AMSL)	$382.8 \mathrm{~m} / 1255.9 \mathrm{ft}$
Antenna Centerline (AGL)	$4.88 \mathrm{~m} / 16.0 \mathrm{ft}$
Antenna Model	NEC 7.6 Meter
$\begin{array}{ll}\text { Antenna Mode } \\ \text { Interference Objectives: Long Term } & \text { Transmit } 2.0 \mathrm{GHz} \\ -154.0 \mathrm{dBW} / 4 \mathrm{kHz} & 20 \%\end{array}$	
	m $\quad-131.0 \mathrm{dBW} / 4 \mathrm{kHz} \quad 0.0025 \%$
Max Available RF Power	-34.9 (dBW/4 kHz)

	Horizon Elevation $\left({ }^{\circ}\right)$	Antenna Discrimination $\left({ }^{\circ}\right)$	Transmit 2.0 GHz Horizon Gain (dBi)	Coordination Distance (km)
190	0.00	119.03	9.50	235.00
195	0.00	123.27	9.50	235.00
200	0.00	127.42	9.50	235.00
205	0.00	131.46	9.50	235.00
210	0.00	135.35	9.50	235.00
215	0.00	139.06	9.50	235.00
220	0.00	142.53	9.50	235.00
225	0.00	145.68	9.50	235.00
230	0.00	148.41	9.50	235.00
235	0.00	150.60	9.50	235.00
240	0.00	152.13	9.50	235.00
245	0.00	152.89	9.50	235.00
250	0.00	152.80	9.50	235.00
255	0.00	151.88	9.50	235.00
260	0.00	150.20	9.50	235.00
265	0.00	147.88	9.50	235.00
270	0.00	145.06	9.50	235.00
275	0.00	141.84	9.50	235.00
280	0.00	138.31	9.50	235.00
285	0.00	134.56	9.50	235.00
290	0.00	130.63	9.50	235.00
295	0.00	126.57	9.50	235.00
300	0.00	122.40	9.50	235.00
305	0.00	118.15	9.50	235.00
310	0.00	113.84	9.50	235.00
315	0.00	109.48	9.50	235.00
320	0.00	105.08	8.00	235.00
325	0.00	100.66	8.00	235.00
330	0.00	96.22	8.00	235.00
335	0.00	91.77	8.00	235.00
340	0.00	87.31	835.00	
345	0.00	82.87	88.43	8.00
350	0.00	74.01	235.00	
355	0.00		8.00	235.00
		235.00		

5. CERTIFICATION

I HEREBY CERTIFY THAT I AM THE TECHNICALLY QUALIFIED PERSON RESPONSIBLE FOR THE PREPARATION OF THE FREQUENCY COORDINATION DATA CONTAINED IN THIS APPLICATION, THAT I AM FAMILIAR WITH PARTS 101 AND 25 OF THE FCC RULES AND REGULATIONS, THAT I HAVE EITHER PREPARED OR REVIEWED THE FREQUENCY COORDINATION DATA SUBMITTED WITH THIS APPLICATION, AND THAT IT IS COMPLETE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF.

BY:

Gary K. Edwards
Senior Manager COMSEARCH 19700 Janelia Farm Boulevard Ashburn, VA 20147

DATED: September 28,2006

[^0]: ${ }^{1}$ The U.S. Table of Allocations provides for the use of the 5150.52 .50 MFz (unlink) band and the 69757075 MrIz (downlink) band by two gateway earth stations operating with the Globalstar syster gateway earth station operating with the ICO system.

[^1]: *Attended February 1, 2000 Meeting only.

 * Attended February 7, 2000 Meeting only.

