Unmanned Surface Vehicle (USV) Request Special Temporary Authority (STA) Portsmouth R.I.

1. Purpose of Operation

To test of the Qirsh Unmanned Surface Vehicle

Raytheon will Participate in Demonstration of the Unmanned Surface Vehicle Location: Raytheon Integrated Defense Systems (IDS) Portsmouth, R.I., Integration laboratory coordinates are; 41-37-35 North Latitude, 071-18-18 West Longitude, and the area,

Frequency Stop: 4.680 Type: GHz Emission Bandwidth: 6 Mhz Emission: COFDM using; BPSK, QPSK and 16QAM modulations Supplementary Details: Intended Use: Integration testing of a Maritime Unmanned Surface Vehicle (USV) mission equipment.

Description of Requirement: demonstrate reliable RF communications between Unmanned Surface Vehicle (USV) and Base Station.

Comments:

A radius of operation of 10,000 meters around above listed coordinates is desired for integration and testing purposes. It should be noted that a control point is located 500 meters to the south of the EWC integration lab location.

Point of Contacts

Requester Name: Mr. Daniel Salazar, (858) 522-4087, Daniel.Salazar@raytheon.com

Requester Organization: Raytheon Company

Files Number: 0753-EX-ST-2016

__ Class of Station: FIXED/ Mobile
__ Station Location: FIXED/ Mobile
__ Effective Date:6/06/2016
__ Expiration Date:12/06/2017

2. Experimental Explanations

Raytheon will conduct developmental testing and evaluation on the Unmanned Surface Vehicle (USV). Additional Information:

Program / Project Name: Qirsh Unmanned Surface Vehicle (USV) Security Classification; Unclassified, Raytheon Company Proprietary

Equipment Transmitter: NETNode-MIMOR-440500, Manufacturer; Cobham Tactical

Communications Ltd

Number of Equipment: 2 transceivers and 8 antenna units

Radar Tunability: N/A

Power: 2 Watts

Antenna Type: Gain: 9 dBi

Antenna part number; OA9-4.6V/1701 Elevation, 25 ft: Antenna Distance: 50 ft

Feed Point Height: 22 ft Orientation: Vertical and horizontal pairs Polarization:

Beam Width: TBD

Receiver: NETNode-MIMOR-440500 Sensitivity, - 98 dBm

Antenna Type: Gain: 9 dBi

Feed Point Height: 22 ft Orientation: Vertical and horizontal pairs Polarization:

Beam Width: TBD Elevation 25 ft

Antenna Type: Gain: 9 dBi

Antenna part number; OA9-4.6V/1701 Elevation, 25 ft: Antenna Distance: 50 ft

Feed Point Height: 22 ft Orientation: Vertical and horizontal pairs Polarization:

Beam Width: TBD

Receiver: NETNode-MIMOR-440500 Sensitivity, - 98 dBm

Antenna Type: Gain: 9 dBi

Feed Point Height: 22 ft Orientation: Vertical and horizontal pairs Polarization:

Beam Width: ___TBD____ Elevation 25 ft

Figure 1: The 4400-4940 MHz Channel Plan

								4	1400	- 4	94	40 I	ИΗ	z CH	ΙAΝ	INEL	PL	AN											
														4.670 GH	z →	- 4.670 GH	z												
4 GHz Channel Bandwidths	Lower Band													Upper Band															
	- 4.	00 GH	Z				4.640 GHz →									← 4.7	00 GH:	(2							4.940 GHz -				
											L	Ш						П				П	П					П	
40.00 MHz (A)		A1	П	A2		A3	A	A4		A5	5 A6		L				A1'		A2'		A3'		A4"		A5'		A6"		
30.00 MHz (B)	8	1	B2	- 1	33	B4	85	Т	86	В	7		38	89		B10	8	1"	B2'	B3	9	B4"	8	5'	8	6	87		88
20.00 MHz (C)	C1	C2	C3	C	0	5 C6	C7	C8	C9	C10	0	011	C12	C13	C1	4 C15	C11	C2'	C3'	C4'	C5'	C6'	C7	1 0	8'	C9,	C10'	C1	1' C
10.00 MHz (D)	(D	(D1-D4) (20) 10 MHz (D5-D24)										25 26	27	28 29 30	(D1	'-D4')	(20) 10 MHz (D5'-D24')												
5.00 MHz (E)	(8) 5	8) 5 MHz (40) 5 MHz* (E9-E48)									(12) 5.0	0 MH	(E49-E60)	(8) 5	3) 5 MHz (40) 5 MHz* (E9*-E48*)														
2.50 MHz (F)	(16) 2	16) 2.5 MHz (80) 2.5 MHz* (F17-F96)									(24)2.50	MHz	(F97-F120) (16) 2.5 MHz (80) 2.5 MHz* (F17'-F96')																
1.25 MHz (G)	(32)1	(160) 1.25 MHz* (G33-G192)							(48)1.25	MHz((G193-G240) (32) 1.25MHz (160) 1.25 MHz* (G33'-G192')																		
															One-l	Vay tions													