Raytheon Intelligence, Information and

Services Experimental License New Application

Related Past Call Sign: WH2XWM File Number: 0737-EX-CN-2021

Overview and Explanation of Use & Compliance with NTIA 8.3.27

Overview: Raytheon Intelligence & Space (Raytheon) is filing a new application to replace call sign WH2XWM for use of a GPS re-radiation system at its facilities at 13900 Lincoln Park Dr., Herndon Virginia facility that utilizes GPS for positioning information and timing technologies for test equipment for its wireless test bed. The GPS re-radiation system is required for the testing of GPS technologies that are embedded into the communications systems that Raytheon is developing in this lab.

General compliance with NTIA section 8.3.27: set forth below are Raytheon's responses to the requirements of 8.3.27 as those answers apply for this location.

For any questions about this application, please contact Brian Kavalar, Raytheon RIS at 317-517-998, brian_r_kavalar@raytheon.com or Janine Smith Raytheon RIS at W-301-851-8144, C-703-944-4432 Janine_Smith@raytheon.com.

Compliance with the Requirements of NTIA Manual Section 8.3.27

1. Individual authorization is for indoor use only and is required for each device at a specific site.

This GPS re-radiation system is installed indoors in a laboratory with access that is limited to Raytheon authorized personnel only.

 Applications for frequency assignment should be applied for as an XT station class with a note indicating the device is to be used as an "Experimental RNSS Test Equipment for the purpose of testing GPS receivers" and describing how the device will be used.

Raytheon requests the assistance of the FCC and NTIA to properly classify the frequency authorizations.

3. Approved application for frequency assignment will be entered in the GMF.

Raytheon requests the assistance of NTIA and the FCC in entering this data into the GMF.

4. The maximum length of the assignment will be two years, with possible renewal.

Raytheon is seeking a renewed authorization for two years, and it will seek renewals when required.

5. The area of potential interference to GPS reception (e.g., military or contractor facility) has to be under the control of the user.

The proposed installation is inside the Raytheon facility at Herndon, Virgina. Access to the facility is limited to Raytheon personnel and limited authorized visitors. The building is a secure facility, and no unauthorized visitors can enter.

6. The maximum equivalent isotropically radiated power (EIRP) must be such that the calculated emissions are no greater than -140 dBm/24 MHz as received by an isotropic antenna at a distance of 100 feet (30 meters) from the building where the test is being conducted. The calculations showing compliance with this requirement must be provided with the application for frequency assignment and should be based on free space propagation with no allowance for additional attenuation (e.g., building attenuation.)

<u>Link Budget:</u> The link budgets for the L1/L2 re-radiation at each of the two locations are attached to this exhibit, and they show the calculations applicable to this proposed installation of a GPS re-radiation system.

Location in building: The re-radiation device will be installed inside Raytheon building 13900 Lincoln Park Dr., Herndon, Virginia. The installation is deep within the building, far from any outside wall. The attached link budget shows that the signal strength at 100 feet from the re-radiating antenna is below -140 dBm/24 MHz. Thus, the signal strength at 100 feet from the building is going to be significantly lower still, but Raytheon wanted to ensure that the signal strength was attenuated so much that there would be no chance of interference.

7. GPS users in the area of potential interference to GPS reception must be notified that GPS information may be impacted for periods of time.

Raytheon has posted signs in the lab where the re-radiation system is installed alerting those in the area that there are GPS re-radiation systems in use in that area.

- 8. The use is limited to activity for the purpose of testing RNSS equipment/systems.

 Raytheon is requesting authorization to use a re-radiation system specifically for testing of GPS systems on its products.
- 9. A "Stop Buzzer" point of contact for the authorized device must be identified and available at all times during GPS re-radiation operation of the device under any condition.

The Stop Buzzer point of contact for all these devices is:

Janine Smith, Raytheon RIS

301-851-8144 (office)

703-944-4432 (cell)

Janine_Smith@raytheon.com

Location 1 Link Budgets for GPS L-1 and L-2

Location Number: 1, Latitude 38 55 33 N Longi	tude 77 25 43 W , June 18, 20	15						
Use: Re-radiation system used 100% for testing								
installed: indoors								
Manufacturer: all components are made by GPS	Networking							
manufacturer: all components are made by Grb	Trotworking							
GPS Sig	gnal Analysis - L1 Link Budget							
Frequency	1575.42		Signal Level					
Wavelength	0.19042541	meters	dBm	Watts	picoWatts			
GPS Input Signal Level	-130	dBm	-130	1E-16	0.0001			
GPS Receive Antenna amplifier gain	38	dB	-92	6.3E-13	0.63			
GPS RF Amplifier gain	22	dB	-70	1E-10	100.00			
GPS RF Attenuator	0	dB	-70	1E-10	100.00			
LMR400 Coax loss per foot	-0.067	dB						
Coax Length	155.22	feet						
Total Coax Loss	-10.39974	dB	-80.4	9.1E-12	9.121			
GPS Transmitting Antenna Gain	3	dB	-77.4	1.8E-11	18.198			
Distance from transmit antenna	30.55	meters						
Distance from transmit antenna	3.2800399	feet						
Pathloss to unit under test	-66.08991623	dB	-143.5	4.5E-18	4.477E-06			
Signal level at unit under test EIRP to ERP			-145.6	2.7E-18	2.735E-06			
Distance from transmit antenna	30.48	meters						
Distance from transmit antenna	100.0000002	feet						
Pathloss to 100 ft	-66.06999119	dB	-143.5	4.5E-18	4.498E-06			
Signal level at 100 ft ERP			-145.6	2.7E-18	2.748E-06			
GPS Signal Analysis - L2 Link Budget								
Frequency	1227.6		Signal Level					
Wavelength	0.244379277		dBm	Watts	picoWatts			
GPS Input Signal Level		dBm	-130	1E-16	0.0001			
GPS Receive Antenna amplifier gain		dB	-92		0.63			
GPS RF Amplifier gain		dB	-70	1E-10	100.00			
GPS RF Attenuator		dB	-70	1E-10	100.00			
LMR400 Coax loss per foot	-0.067							
Coax Length	155.22							
Total Coax Loss	-10.39974			9.1E-12	9.121			
GPS Transmitting Antenna Gain		dB	-77.4	1.8E-11	18.198			
Distance from transmit antenna		meters						
Distance from transmit antenna	100.2296589							
Pathloss to unit under test	-63.92312674	dB	-141.3					
Signal level at unit under test EIRP to ERP			-143.5	4.5E-18	4.505E-06			
Distance from transmit antenna	30.48	meters						
Distance from transmit antenna	100.0000002							
Pathloss to 100 ft	-63.9032017	dB	-141.3					
Signal level at 100 ft ERP			-143.4	4.5E-18	4.526E-06			

Location 2 Link Budgets for GPS L-1 and L-2

Location Number: 2, Latitude 38 55 34 N Lon	gitude 77 25 4	3 W . J	une 18, 2015					
Use: Re-radiation system used 100% for testing								
installed: indoors	5 mounted unite	111145						
Manufacturer: all components are made by GP	S Networking							
manufacturer: all components are made by or	Julia							
GPS Signal /	Analysis - L1 l	Link Bud	get					
Frequency	1575.42			Signal Level				
Wavelength	0.190425		dBm	Watts	picoWatts			
GPS Input Signal Level		dBm	-130	1E-16	0.0001			
GPS Receive Antenna amplifier gain		dB	-92	6.31E-13	0.63			
GPS RF Amplifier gain		dB	-50	1E-08				
GPS RF Attenuator		dB	-50	1E-08				
LMR400 Coax loss per foot	-0.067			12 00	10000.00			
Coax Length	410.44							
Total Coax Loss	-27.4995		-77.4995	1.78E-11	17.785			
GPS Transmitting Antenna Gain		dB		3.55E-11	35.486			
Distance from transmit antenna		meters	71.1555	J.JJL 11	55.100			
Distance from transmit antenna		feet						
Pathloss to unit under test	-66.07		-140 569	8.77E-18	8.77E-06			
Signal level at unit under test EIRP to ERP	-00.07	uD.		5.36E-18				
Distance from transmit antenna	30.48	meters	-1-12.705	J.JOL-10	5.502-00			
Distance from transmit antenna		feet						
Pathloss to 100 ft	-66.07		-140 569	8.77E-18	8.77E-06			
Signal level at 100 ft ERP	-00.07	uD.	-142.709					
Digital level at 100 It Litt			-1-12.705	J.JOL-10	5.50E-00			
GPS Signal /	Analysis - L2 l	Link Bud	get					
Frequency	1227.6			Signal Level				
Wavelength	0.244379		dBm					
GPS Input Signal Level		dBm	-130	1E-16	0.0001			
GPS Receive Antenna amplifier gain		dB	-92	6.31E-13	0.63			
GPS RF Amplifier gain		dB	-50	1E-08				
GPS RF Attenuator		dB	-50	1E-08	10000.00			
LMR400 Coax loss per foot	-0.067			12 00	10000.00			
Coax Length	410.44							
Total Coax Loss	-27,4995		-77.4995	1.78E-11	17.785			
GPS Transmitting Antenna Gain		dB	-74.4995		35.486			
Distance from transmit antenna		meters	-7-1.4993	J.JJL-11	55.400			
Distance from transmit antenna		feet	+ -					
Pathloss to unit under test	-63.9032		-138.403	1.44E-17	1.44E-05			
Signal level at unit under test EIRP to ERP	-03.9032	u.	-140.543					
Distance from transmit antenna	30.48	meters	-1-10.545	0.05E-10	0.0315-00			
Distance from transmit antenna		feet	+ -					
Pathloss to 100 ft	-63.9032		-138.403	1.44E-17	1.44E-05			
Signal level at 100 ft ERP	-03.9032	uD.	-140.543					
Signal level at 100 it ERF			-140.343	0.03E-10	0.03E-00			