Experimental License Planning Information Request

The following information request will help us to complete and file an application for an experimental license. The information requested is generally needed both for the application and for coordination requirements that will be part of the application processing. Please provide as much complete information as possible. There will be questions – on your part and on the part of the filing team. To discuss, please contact your spectrum manager at:

Table of Information – FCC application: APPLICATION FOR TERRESTRIAL USE of KA BAND

Name of program: ____CORE_____

Administrative Questions:	Information:
Formal Name of Applicant:	Raytheon IIS
Address of applicant	
Contact name for application	
Phone number	
e-mail	
FRN	
Is there a federal contract?	
What number?	
Is Confidentiality Needed?	<u>yes</u>
Technical Questions:	Information:
Address of experiment	23010 Ladbrook Drive
(including city, state, county)	Dulles VA 20166
Geographic coordinates:	Longitude -73.989308
(latitude and longitude)	Latitude 40.741895
Radio manufacturer	Tampa Microwave
Radio(s) model number(s)	Transmitter 1:Tampa Microwave Satellite Emulator System with
	RF module for KA band model number 220264-ka-1
	Overall system part number: 20044-5
	Ka-Band Transceiver: 220264-Ka-1
Number of units to be used	1
Outdoor transmitter	The test stations will likely be on a tripod so they can be moved.
information:	The testing is only temporary. The height probably will not
What is the height of the	exceed 5 feet high from the rooftop. The installation will be on
transmitter?	the roof of the building. The building is 151 feet high.
What structure will it be	
installed on?	

for more information contact Suzanne Webber. 703-260-3587 or suzanne_v_weber@raytheon.com

What is the overall height of	
the structure?	
Location of experiment:	Outdoor, fixed
Indoor? Outdoor? Mobile,	
fixed?	
Radius of Operations?	The test stations will be operating about 50 top 100 feet apart on
If outdoor, what features of	the rooftop for the terrestrial testing.
the area might attenuate	We have buildings all about the same height close by but they
signals?	would not be within the link.
Spectrum and transmission	Information:
characteristics questions:	
What spectrum is requested?	KA Band
Will the spectrum use be	both
pulsed or CW?	
Will the frequencies be	both
stepped through, swept	
through, or used constantly?	
How much time will the	When testing happens it will be for the duration of the
testing be conducted? (e.g., all	workday, but typically transmission is only for a few hours
day, workdays, or only 2 hours	during the day, and can last for up to 3 weeks. Estimate 20
every two weeks?)	hours per month
What is the proposed power	See table below
level:	
Output power, in watts?	
ERP, in watts:	
Antenna gain (in dBi), if any?	See table below
Can the program tolerate any	No
spectrum carve-outs?	
What is the duty cycle?	For the initial handshake, this could be up to 100% I think,
	but then after that it's less.
Does this propose use of a	Yes, we will use directional horn type antennas and
directional antenna? If so,	SATCOM dishes.
What is the half power	
beamwidth?	Half power BW for the parabolic dish is 1.1 degrees, the 3dB
What is the orientation in the	beam width for the horn is 50 degrees.
horizontal plane?	
What is the orientation in the	The horizontal and vertical directions have 90 degrees
vertical plane?	isolation. The transmit for the simulator is on the vertical
	plane.
What is the emission	The VSAT transponders are 36MHz but they will operate at
designator(s)?	<u>3MHz or below: 3M00</u>

	The modulation is PCM, PSK/QAM, I don't know if you should use K or M.
	<u>The nature of the signal is two or more channels carrying</u> quantized digital info with a combo of digital or analog : 9
	The type of information is data, video, internet traffic: W
	<u>3M00K9W</u>
Stop Buzzer POC?	Suzanne Weber , Chris Gentile

TEST 1:

Simulator Specs are as below for KA band transmitter for the simulator

Transmitter	KA Emulator		
Antenna Type	horn 19.2 to 20.2GHz		
Max Gain in dBi	5.00		
beamwidth	50 deg		
Max Transmit Power that we are limiting testing to:	10.00 dBm		
Max EIRP for simulator-to-terminal on KA band:	31.6mW		

The following is from the Tampa Microwave Simulator:

A.6	Ka-Band	Specifications
-----	---------	----------------

Up Link Parameters	Down Link Parameters	Beacon Parameters		
Up Link Freq. 29–30 GHz	Down Link Freq. 19.2 – 20.2 GHz	Freq. 19.2 – 20.2 GHz		
Input Level -60 dBm min. to -25dBm max.	Output Level P1dB +20dBm	Beacon Level +10dB nom		
Level Adjust 30dB	Level Adjust - CEP mode 40dB Level Adjust - Loop-Back mode 30dB	Level Adjust 10dB		
Polarization Horizontal	Polarization Vertical	Polarization Vertical		
Antenna Gain 5dBi	Antenna Gain 5dBi	Antenna Gain 5dBi		
3dB Beam Width 70°	3dB Beam Width 50°	3dB Beam Width 50°		
Spectra Non- Invert	Spectra Non- Invert	-		
		Resolution 8MHz		

Specs are as below for typical terminal transmitter (s) testing with the simulator

for more information contact Suzanne Webber. 703-260-3587 or suzanne_v_weber@raytheon.com

Transmitter	VSAT terminal
	The parabolic dishes will be three
Antenna Type	sizes of 65, 75, and 85cm
	Max 50.61dBi
Max Range	Min 46.0dBi
beamwidth	1.1 deg
Max Transmit Power in dBm- set by GUI control	-13 max to -17dBm min
Max EIRP for terminal-to-simulator on KA band	1W EIRP

General Purpose of Testing:

The Tampa Microwave VSAT Emulator will be used for two types of test as described below. The band of operation shall be KA, KU, or L band. In each case, the test operator (Doug Knot) will reduce the output power output of the VSAT terminal systems to correspond with the lowest possible output power OTA. We already have a KU band experimental permit that covers the KU testing and we are not using the L band at this time.

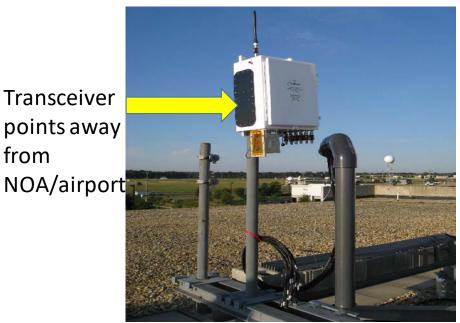
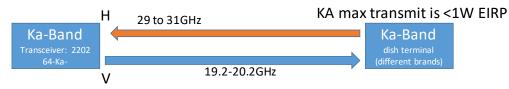
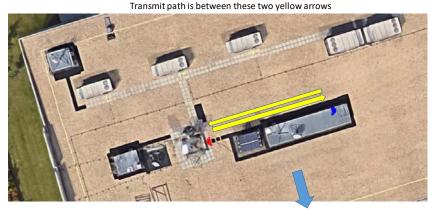



Figure 1 Photo of Tampa Microwave Emulator Installation

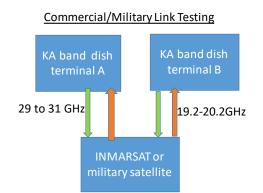
A.1.1 TEST 1- TERESTRIAL ROOFTOP, SHORT DISTANCE


In this scenario there is bi-directional communications between the VSAT emulator and a few different **commercial and military** VSAT terminal systems. All are located on the roof. The terminals are to be placed on the terminal platform facing Ladbrook drive, and the emulator will be facing the terminals while installed on a 10 foot pole. The emulator has two integrated horn antennas with low gain. The antennas are dual polarity. The polarity of the transmitter depends on the band used. We will transmit at about 50-100 feet (70 nominal). Dynamic range measurements will be taken using different size VSAT dishes. The dish diameters will be 65, 75, and 85cm. This is being done to verify that operators can reassemble the antennas with accuracy. Careful consideration is taken to make sure the signal power and direction are minimal. The experimental testing permit WJ2XRL was established for military use from 30-31GHz and we need to also test with commercial terminals from 29 to 30GHz. That is the justification for this request to increase the frequency range of this permit down to 29GHz.

Terrestrial KA Band Testing Setup

Sat Simulator max transmit <50mW EIRP

The figure below shows the location of the emulator in red, and the terminals in blue. The transmit path is going East/West, parallel to, but not through, the US government and IAD airport airspace The transceiver is mounted 10 feet from the roof surface and pointed slightly down at an angle of 5 degrees.



Airport and NOA on this side of building, out of beam path

Figure 1 Emulator and Terminal Site Locations

A.1.2 TEST 2- GROUND TO SKY COMMERCIAL AND MILITARY

In this scenario, a set of VSAT terminals will be used to transmit/receive to a live satellite in the KA, KU, or L band using an existing satellite commercial lease (non experimental) or military satellites. This link power density will vary depending on the band, and the SATCOMM carrier. The carrier will determine the transmit power and provide a transmit plan. <u>This should not need</u> an experimental permit as it is covered by the commercial lease through the SatComm provider or by military co-ordination. Two terminals will be installed and active at the same time for bi-directional testing.

Point of Communication: INMARSAT 5 F2 55West or Military POC

Elevation: 39.2 degrees

Azimuth: 146.7 degrees (true)

Location: Roof on antenna platform

Note: INMARSAT uses the spectrum down to 29GHz for commercial use, that is the justification for the permit change. The simulations that we want to run on the rooftop (terrestrial point to point) need to be at the same frequencies we would be using when connecting to a commercial satellite.

The various dishes will be setup on the platform on the roof, facing 55W for testing with the INMARSAT transponder as shown below in green. THIS IS COVERED VIA COMMERCIAL or MILITARY AGREEMENTS.

FAA Coordination:

In the event that FAA coordination is required, the following additional information is required:

<u>Frequency</u> <u>Bands</u> <u>requiring</u> FAA	Antenna <u>Make</u>	<u>Antenna</u> <u>Type:</u> Eg: dipole, panel, etc	<u>Antenna</u> <u>Gain</u>	Pulsed or <u>CW?</u> If pulsed, PRR, &	<u>Azimuth</u> <u>of</u> <u>operations</u>	<u>Site</u> <u>Elevation</u>	<u>Height</u> <u>of</u> <u>install</u>
<u>Coordination</u>		paner, etc		<u>pulse</u> <u>duration</u>			
(sample frequencies)		And, polariza- tion		Are frequencies Stepped, swept, or other			
30 to 31GHz	Any make that fits gain limits	Xpol horn and dual polarity dish	Up to 5dBi for horns and 50.61dBi for dish	both	72 deg East 252 deg West	294 feet above sea level	Roof is 151 ft plus up to 5 feet from roof top

Transmitter	Antenna	Gain	Power	EIRP	Pulse/C	PRR/PD?	Stepped,	Emission
					W		<u>Swept,</u>	Designator(s)
							<u>or N/A</u>	
А	Horn	5dBi	10dBm	50m	Pulse/C		both	<u>3M00K9W</u>
19.2 to 20.1				W	W			
GHz								
В	Parabolic	Max	Betwee	<1W	Pulse/C		both	<u>3M00K9W</u>
29-30GHz		50.61d	n -17 to		W			
		Bi	-13dBm					
		Min						
		46.0dBi						

Stop Buzzer POC's:

Suzanne Weber W-703-260-3587 C-412-498-2524 Suzanne_V_Weber@raytheon.com

Chris Gentile W-703-260-3588 C-703-407-6785 Christopher_A_Gentile@raytheon.com