Overview and Explanation of Use & Compliance with NTIA 8.3.28

<u>Overview:</u> Raven Industries, Inc. is filing this application for use of a GPS re-radiation system at its facility at 47513 254th Street, Baltic, Minnehaha County, South Dakota to re-radiate GPS within the building in order to verify signal acquisition of GPS products being developed. This product relies on an antenna that is integrated into the unit requiring the re-radiated signal to verify operation.

General compliance with NTIA section 8.3.28 set forth below are Raven's responses to the requirements of 8.3.28 as those answers apply for this location.

For any questions about this application please contact Laura Zumhofe, Raven Compliance Manager, 605-731-0982, laura.zumhofe@ravenind.com

Compliance with the Requirements of NTIA Manual Section 8.3.28

 Individual authorization is for indoor use only, and is required for each device at a specific site. Answer: Yes, Raven Industries, Inc. confirms that this device is for indoor use only inside Raven's facility and used by Raven employees

2. Applications for frequency assignment should be applied for as an XT station class with a note indicating the device is to be used as an "Experimental RNSS Test Equipment for the purpose of testing GPS receivers" and describing how the device will be used.

Answer: Yes, Raven Industries, Inc. confirms that this application for frequency assignment is applied for as an XT station class and will be used as Experimental RNSS Test Equipment for the purpose of testing GPS receivers. Specifically, this device is used to re-radiate GPS within the building in order to verify signal acquisition of GPS products being developed and tested. Many of these products rely on an antenna that is integrated into the unit requiring the re-radiated signal to verify operation.

3. Approved applications for frequency assignment will be entered in the GMF.

Answer: Yes, Raven Industries, Inc. affirms that we accept the fact that the requested frequency of 1575.42 Mhz will be published in the Government Master File (GMF) database.

4. The maximum length of the assignment will be two years, with possible renewal. Answer: Yes, Raven Industries, Inc. confirms understanding that the authorization will be for two (2) years, and it will seek renewals when required.

5. The area of potential interference to GPS reception (e.g., military or contractor facility) has to be under the control of the user.

Answer: Yes, Raven Industries, Inc. is in sole control of the GPS re-radiator units inside the building at 47513 254th Street, Baltic, SD 57003

6. The maximum equivalent isotropically radiated power (EIRP) must be such that the calculated emissions are no greater than -140 dBm/24 MHz as received by an isotropic antenna at a distance of 100 feet (30 meters) from the building where the test is being conducted. The calculations showing compliance with this requirement must be provided with the

application for frequency assignment and should be based on free space propagation with no allowance for additional attenuation (e.g., building attenuation.)

Answer: The re-radiators will be running at -146.69857 dBm at 100 feet from the building, this does not include attenuation from the building itself. Free space loss includes the 100 feet outside of the nearest point of the building. The calculations showing compliance with this requirement are provided below, under Question 2.

7. GPS users in the area of potential interference to GPS reception must be notified that GPS information may be impacted for periods of time.

Answer: Raven Industries, Inc. will post notices that re-radiated GPS is in use and may cause disruption of GPS service.

8. The use is limited to activity for the purpose of testing RNSS equipment/systems.

Answer: Raven Industries, Inc. confirms that these units are for testing of its GPS related products only.

9. A "Stop Buzzer" point of contact for the authorized device must be identified and available at all times during GPS reradiation operation of the device under any condition.

Answer: To "Stop Buzzer" contact: Nathan Dixon @ Nathan.dixon@ravenind.com or 800-243-5435 ext. 2618

205 E 6th Street, Sioux Falls, SD 57104 www.ravenind.com

Question 2. <u>"Please provide a detailed calculation(s) for the link budget specified on item 6 of section 8.3.28. Please make</u> certain the ERP submitted on your application matches with what you calculate on the link budget."

Jostance (th) Gain/Loss Bis Bistance (th) Bistance		1			Link Budge	et Power Lev	el (Radiato	A - RIC Development)
Discret (ft) dB dBW Weil PW exclude Signal Level 99 135 1557 127 127 M4 00 Cable 100 -51 1231 931 4386 446-08 GSB Cable 20 -6 1377 1077 1568 6 GSB Cable 20 -6 1377 1077 1568 127-56 GSB Cable 20 -6 1377 1077 1568 216-56 GSB Cable 20 -6 1377 1077 1568 216-56 Recived Power (evel res Space Loss 1157420000 Hz Ince (Mhz) dB/100ht Freq dB/20ht Recived Power (evel 100 feet from building (no attenuation figured for building res Forequency 157420000 Hz Ince (MHz) dB/100ht Freq dB/20ht Recived Power (evel 100 feet from building (no attenuation figured for building reters/foot 0.308 NS			Gain/Loss		Link Duug			
eceived Signal Level microna Gan MR 400 Cable 100 5.1 127 1395 14 495 15 485 15 485 15 485 1 485 14 495 40 5 1 485 14 495 40 5 1 4 495 4 4 5 6		Distance (ft)	dB	dBW	dBm	Watts	nW	
ntens Gan Anti- MR 400 Cable 100 -5.1 -1221 -0.133.1 4.898E.1 4.85E.0 -20 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1	Received Signal Level	2.0000000 (.1.)		-157	-127	1.995E-16	2E-10	
MR 400 cable teronator 23 Splitter 23 Splitter 23 Splitter 23 Splitter 24 Splitter 25 Splitter 20 -4.6 1337, 107, 1.5985,14 1.57.68 3 107, 77, 1.6985,14 1.57.68 3 107, 77, 1.6985,14 1.57.68 3 107, 77, 1.6985,14 1.57.68 3 107, 77, 1.6985,14 1.57.68 Related Power (#) 100 feet from building (no attenuation figured for building meters/foot 0 .3048 RG 58 loss in dB/100/t 75 Frequency 15 Splitter 16 SS loss in dB/100/t 10 145 10 128 100 128	Antenna Gain		39	-118	-88	1.585E-12	1.58E-06	
Itenuation Itenuation <thitenuation< th=""> Itenuation Itenuation<th>LMR 400 Cable</th><th>100</th><th>-5.1</th><th>-123.1</th><th>-93.1</th><th>4.898E-13</th><th>4.9E-07</th><th></th></thitenuation<>	LMR 400 Cable	100	-5.1	-123.1	-93.1	4.898E-13	4.9E-07	
2 spilter G88 Cable 20 -46 1377 1077 1698E 11 10 -68 9387 -176.59857 146.69857 10 -8 9387 -176.59857 146.69857 10 -8 9387 -176.69857 146.69857 10 -8 1	Attenuator		-10	-133.1	-103.1	4.898E-14	4.9E-08	
GS 261e 20 -4-6 -1377 -1077 16985-14 1.7E-05 Related Power Level respect to 55 107.7 -77.7 166985 1 136621 1.27E-05 Related Power Level Related Power Relate	1:2 Splitter		0	-133.1	-103.1	4.898E-14	4.9E-08	
anison Amplifier 30 107.7 77.7 L698E-11 J.7E-05 Radiated Power (evel) ree Space Loss 140 -68.99857 -176.6985 1.166.6986 2.139E-12 2.14E-12 Received Power (evel) peed of light 299792458 m/s LMR 400 RG 58 dB/100 ft Freq dB/100 ft P/S Frequency 1575420000 Hz freq (MHz) dB/100 ft Freq dB/100 ft -	RG58 Cable	20	-4.6	-137.7	-107.7	1.698E-14	1.7E-08	
ree Space Loss 140 -68 99837 -176.69857 -146.6986 2.139F.18 2.14F-12 Received Power @ 100 feet from building (no attenuation figured for building for attenuation for attenuation figured for building for attenuation figured for building for attenuation figured for building for attenuation for attenuation figured for building for attenuation figured for building for attenuation for a	Radiator Amplifier		30	-107.7	-77.7	1.698E-11	1.7E-05	Radiated Power Level
peed of light 299792458 m/s LMR 400 PS Frequency 1575420000 Hz freq (MHz) dB/100ft Freq dB/100 ft Vavelength 0.190293673 meters 1500 5.1 1500 23 neters/foot 0.3048 RG 58 Loss In dB/100ft 1 0.46 1 0.46 1 0.46 1 0.06 1 0.0 1.4 1 0.46 1 0.0 5.4 1 0.00 1.4 1 0.46 1 0.0 5.4 1 0.00 1.4 1 0.0 5.4 1 0.00 1.4 1 0.0 7.9 1 0.0 1.4 1 0.0 1.4	Free Space Loss	140	-68.99857	-176.69857	-146.6986	2.139E-18	2.14E-12	Received Power @ 100 feet from building (no attenuation figured for building
peed of light 299792458 m/s LMR 400 RG 58 #95 Frequency 1575420000 hz freq (Mhz) dB/100t res weelength 0.390295673 meters 1500 23 freq (Mhz) dB/100t neters/foot 0.3048 RG 58 freq (MHz) dB/100t freq (MHz) dB/100t 7 0.3048 RG 58 freq (MHz) dB/100t freq (MHz) dB/100t 10 1.0 1.4 0.46 100 freq (MHz) dB/100t freq (Mz) freq (Mz) f								
peed of light 299792458 m/s LMR 400 PS Frequency 1575420000 hz 1575420000 hz freq (Mhz) dB/100ft reters/foot 0.3048 RG 58 Loss in dB/100ft 1 100 1.4 50 5.0 100 3.8 200 5.4 100 1.4 50 5.0 100 1.4 50 5.0 100 1.4 50 5.4 1000 1.5 1000 1.1 1000 1.4 50 5.0 1000 1.4 50 5.0 1000 1.4 500 1.000 1000 1.4 500 1.000 1000 1.4 500 1.000 1000 1.4 500 1.000 1.100 2.3 1.001 1.000 1.000 1.000 1.000 1.000								
PS Prequency 1575420000 Hz freq (Mhz) dB/100t Freq dB/100 t vavelength 0.190293673 meters 1500 5.1 1500 23	Speed of light	299792458	m/s	LMR 400		RG 58		
Variation 0.190293973 meters 1500 5.1 1500 23 neters/foot 0.3048 RG 58	GPS Frequency	1575420000	Hz	freg (Mhz)	dB/100ft	Freq	dB/100 ft	
Interestion Interestion <thinterestion< th=""> <thinterestion< th=""></thinterestion<></thinterestion<>	Wavelength	0.190293673	meters	1500	5.1	1500	23	CPS .
neters/foot 0.3048 RG 58 Image: Constraint of the constraint o						2000		Antenna +39dB Gain
RG 58 rfreq (Mitz) dB/100ft 1 0.46 10 1.4 200 5.4 100 3.8 200 5.4 100 3.8 200 5.4 100 1.1 000 11.1 000 12.8 9000 12.8 1500 23 1500 23 1500 23 1500 23 1500 23 1500 23 1500 23 1500 23 1500 23 1500 23 1500 23 1500 23 1500 23 1500 23 1500 20 1500 150 1500 150 1500 150 1500 150 1500 150 1500 150 1500 150 1500 150	meters/foot	0.3048						
RG 58 rfreq (MHz) dB/100ft 10 14 20 54 50 2.8 10 1.4 20 5.4 200 5.4 50 2.8 200 5.4 700 1.1 50 2.8 50 2.00 5.4 50 2.8 50 2.00 5.4 50 2.8 50 2.00 1.1 50 2.8 50 2.00 1.00 1.1 50 2.8 50 1.00 1		0.5010						
RG 58 Loss in dB/100ft 1 0.46 20 5.0 2.8 10 3.8 200 5.4 200 5.4 200 5.4 200 5.4 200 5.4 200 5.4 200 5.4 200 5.4 200 1.1 900 1.2.8 900 1.2.8 900 1.4.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td>RG 58</td> <td></td> <td></td>						RG 58		
RG 58 Loss in dB/100ft 10.46 10 1.4 50 2.8 100 3.8 200 5.4 400 7.9 700 11.1 900 12.8 1000 1.00 1000 1.00 1000 1.00 1000 1.00 1000 1.1 900 12.8 1000 1.00 1000 </td <td></td> <td></td> <td></td> <td></td> <td>L</td> <td>freq (MHz)</td> <td>dB/100ft</td> <td>LMR 400</td>					L	freq (MHz)	dB/100ft	LMR 400
1 1		RG 58 I	oss in dB/	(100ft		1	0.46	100 ft
25 50 128 100 3.8 200 5.4 100 3.8 200 5.4 100 11.1 900 12.8 700 11.1 900 12.8 100 3.8 100 3.8 100 3.8 100 1.1 900 12.8 1000 14.5 1000 14.5 1000 14.5 1000 14.5 1000 14.5 1000 14.5 1000 14.5 1000 14.5 1000 14.5 1000 14.5 1000 14.5 1000 14.5 10100 14.5 10100 14.5 10100 14.5 10100 14.5 10100 14.5 10100 14.5 10100 14.5 10100 14.5 10100 </td <td></td> <td></td> <td>.000 111 010/</td> <td>10010</td> <td></td> <td>10</td> <td>1.4</td> <td></td>			.000 111 010/	10010		10	1.4	
20 38 15 200 0 54 200 54 400 79 900 111 900 128 7000 145 1500 23 1500 23 1500 23 1500 23 1500 1500 1500 23 1500 1500		25				50	2.4	
10 100 5.4 10 100 7.9 700 11.1 900 12.8 1000 14.5 <td></td> <td>20</td> <td></td> <td>~</td> <td></td> <td>100</td> <td>2.0</td> <td></td>		20		~		100	2.0	
10 400 7.9 700 11.1 900 12.8 900 14.5 100 1500 1000 14.5 1000 14.5 1000 14.5 1000 14.5 1000 1000 1000 23 1000 14.5 1000 14.5 1000 1000 <td< td=""><td></td><td>15</td><td>~</td><td></td><td></td><td>200</td><td>5.0</td><td></td></td<>		15	~			200	5.0	
s		10				400	70	
0 0 12.8 900 12.8 1500 23 1500 23 1500 23 1500 23 1500 23 1500 23 1500 23 1500 23 1500 23 1500 23 1500 1500 1500		5				700	1.3	Splitter Splitter +OdB
0 500 1000 14.5 -10dB -10dB -10dB -10dB -10dB		o 🌠 💷				900	12.8	
10dB 10dB <td< td=""><td></td><td>0 500</td><td>1000 :</td><td>1500 2000</td><td></td><td>1000</td><td>14.5</td><td>S Attenuator</td></td<>		0 500	1000 :	1500 2000		1000	14.5	S Attenuator
Image: Set of the set of						1500	23	≤ -10dB
Image: Image						1.00	25	
Image: Image								
Image: Constraint of the second s								IMD DC 59
Image: Constraint of the second s								20 ft
Image: state of the								2011
Image: state of the								
Image: Sector of the sector of th								
Image: Constraint of the second se								
Image: Constraint of the second se								
Image: Constraint of the second se								
Image: Constraint of the second se								
Image: Constraint of the second se								Arc
Radiator A Ric Development								
RIC Development								Radiator A
								RIC Development

We Solve Great Challenges.

205 E 6th Street, Sioux Falls, SD 57104 www.ravenind.com