
PSA Airlines Hangar Test System for Airframe GPS Receivers

ORF Hangar

PSA intends to use a GPS Repeater system, the GPS Networking model GPS-ITS, that receives GPS from an outside antenna and re-transmits the signal **inside the all metal** PSA Hangar. Signal levels will be kept to a minimum and will not exceed -140dBm 100 feet outside of hangar.

PSA intends to use this to test aircraft GPS receivers while aircraft are undergoing repairs and recertification and has determined that this is the safest and best way without having to move a disabled and disassembled aircraft to the outside of the hangar.

Directional antenna transmits signal towards opposite corner. Signal outside hangar at 100 feet: less than -140dBm.

Distances on diagram are based on a directional antenna mounted in a corner and propagating maximum gain to nearest far wall 175 feet away.

The antenna is mounted in a corner and aimed away from this corner but is mounted no closer than 12 feet in from the nearest of the two corner walls behind with a maximum of 2dB of gain directed towards those closest walls. Therefore: Free space loss at operating frequency to the inside wall distance of 12 feet = -47.68 dB. Lowering repeater amp gain to 25dB, calculated radiated power (Avg

receive power L1 North America + Total Sys gain) = -73 dBm Repeated signal power at inside wall 12 feet away from TX antenna = -120.68 dBm

Going beyond the wall and out 100 feet: =-1*(36.6+(20*LOG10(((12+100)/5280)*1575)))+(-73) = -140.07729 dBm

Per NTIA 8.3.28, 6. The maximum equivalent isotropically radiated power (EIRP) must be such that the calculated emissions are no greater than -140 dBm/24 MHz as received by an isotropic antenna at a distance of 100 feet (30 meters) from the building where the test is being conducted. The calculations showing compliance with this requirement must be provided with the application for frequency assignment and should be based on free space propagation with no allowance for additional attenuation (e.g., building attenuation.)

Use of this Experimental RNSS Test Equipment will be limited to the purpose of testing GPS receivers on aircraft that are undergoing repairs and recertification.

rce for quality GNSS Networking Solutions and Design Services, Now!

OURCE

GPS Networking Link Budget Calculator

PSA Airlines ORF Hangar 1

FRN:0004415857

Banastad Signal Bower @ 100

The following spreadsheet calculates the effective radiated power for a GPS Networking reradiating system as well as the effective signal power at given range in dBm. Enter the components for the strongest repeating path in your system into the section with the red border. NTIA regulations require that the repeated signal be weaker than -140 dBm when measured 100 FT outside of the reradiated structure. Please feel free to reach out to GPS Networking if you need assistance.

Receive Ant Gain	Ant Cable Insertion Loss	Repeater Amp Gain	Repeater Ant Gain Best Case	Building Length (Feet)	Repeated Signal Power @ End of Building In dBm	Repeated Signal Power @ 100' Outside of Building In dBm
33	-3	25	2	12	-120.68	-140.077293
GPS Carrier Frequency MHz 1 Avg Receive Power L1 dBm North America	575		Total System Gain 57	Range in Miles 0.00	Total Signal Power @ Range in Watts 855.7E-18	
- Free Space loss with Isotropic Antennas	130			Range in Meters 3.74	Radiated Power dBm -73	
				Range in Kilometers 0.00	Transmitted Power (W) 25.1E-12	
System Receive Antenna						
Part Number	Gain/Loss (dB)				Effective Radiated Power (W)	
L1GPSA-N	33				50.1E-12	
					Effective Radiated Power (dBW) -103	
Passive Components (Cause I	.oss)					
Part Number	Gain/Loss (dB)					
Amplified Components (Caus Part Number	e Gain) Gain/Loss (dB)					
LA30RPDC	25					
Repeating Antennas						
Repeating Antennas Part Number	Gain/Loss (dB)					
· ·	Gain/Loss (dB) 2					
Part Number	2					
Part Number L1PRRKA-S Cable Runs	2 Loss Per 100 Feet					
Part Number L1PRRKA-S	2		Cable Losses			

GPS Indoor Testing Solution Technical Product Data

Features

- Amplified Roof Antenna Gain ≥ 35 dB
- Mounting Kit Hardware
 Roof Antenna Mount & Adjustable Re-Radiating Mount
- Variable Gain Amplifier with LCD Display
 Push Button Control in 1dB Increments 0-30dB gain
- LMR 400 Ultra Flex Cable 50 ft (Custom Lengths available at additional cost)

Description

The GPS ITS (GPS Indoor Testing Solution) is a complete re-radiating system that allows re-radiation of the GPS L1 signal indoors. The GPS-ITS consists of an active roof antenna, a re-radiating amplifier with a wall mount plug-in transformer that powers the entire system, and a passive re-radiating antenna. The GPS L1 signal from the roof antenna is amplified and radiated indoors. Thus, if a receiver has line of sight with the re-radiating antenna, it can receive the GPS signal indoors up to 100 feet.

Roof Antenna Specifications, $T_A = 25^{\circ}C$

Parameter	Conditions	Min	Тур	Max	Units
Frequency	L1		1.575		GHz
Bandwidth			20		MHz
Out Imped. ⁽¹⁾			50		Ω
Pre-Amp Gain			35	38	dB
Noise Figure			2.75		dB
Output SWR				2.0:1	-
Filtering	1626 MHz	-20			dB
	1500 MHz	-10			dB
Req. DC Input V.		4.5		5.5	Vdc
Current			22		mA

RF Connector Options

Connector Options	CONNECTOR STYLE	CHARGE
	Type N-female	NC

Re-Radiating Amplifier Electrical Specifications, $T_A = 25^{0}C$

Parameter	Conditions	Min	Тур	Max	Units
Freq. Range	Ant – J1	1.1		1.7	GHz
In/Out Imped.	Ant, J1		50		Ω
Gain ⁽¹⁾		0		30	dB
Input SWR (2)	J1 - 50Ω			1.8:1	-
Output SWR	Ant - 50Ω			1.8:1	-
Noise Figure	Ant – J1		3.3	3.5	dB
Current				20	mA
Gain Flatness	L1 – L2 ; Ant – J1		0.5	1	dB
Reverse Isolation	J1 – Ant	35			dB
Group delay Flatness	τ _{d,max} - τ _{d,min} :Ant – J1			1	ns

Re-Radiating Amp System Power Supply Options Source Voltage Options VOLTAGE INPUT STYLE 110VAC Transformer (Wall Mount) 220 VAC Transformer (Wall Mount) 240 VAC United Kingdom) Transformer (Wall Mount) 240 VAC Customer Supplied DC 9-32 VDC Military Style Connector Variable Gain with LCD Display 0-30dB gain range with push button control in 1dB increments

Re-Radiating Antenna Electrical Specifications, $T_A = 25^{\circ}C$

Parameter	Conditions	Min	Тур	Max	Units
Frequency	L1		1.575		GHz
Bandwidth				20	MHz
Impedance			50		Ω
Peak Gain			3		dBic
Output SWR				1.5:1	-
Polarization			RHCP		-

Performance:

ITS (Re-Radiating Kit Max Gain)

Input SWR (Ant. Port) and Frequency Response: Ant. To J1) (Typical, type N connectors):

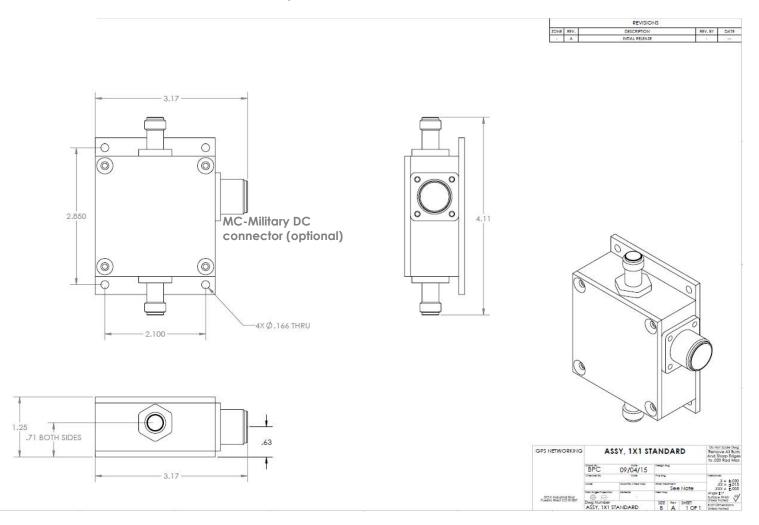
▶1: Transmission JB 30 20 10 -10 -20 -20	Log Mag		as1: Mkr	1 15).00 dE 75.000 30.021	MHz
-30 Start 1 000.000 MHz >2: Reflection 7 5 3 1 -1 -3 -5	2 	2.0 Me		f -9.	800.00 000 75.000 1.184	MHz
Start 1 000.000 MHz 1: Mkr (MHz) dB 1> 1575.0000 30.0 2: 1227.0000 29.0	021		<u>Stc</u> (MHZ) 75.0000 27.0000	0	800.00 1.184 1.431	0 MHz

3

Mechanical

Re-Radiating Kit Amplifier

Dimensions: Height: 1.3"


Length (not including connectors) Body: 2.5" Base Plate: 3.25"

Width (not including connectors): 2.5"

Weight: 11 oz. (316 grams)

Operating Temp. Range: -40° to + 75°C

Finish Housing and Base Plate: ELECTROLESS NICKEL PLATED MIL-C-26074C CLASS 1, .0001-.0003 MAX Finish Lid: ANODIZE, TYPE II, CLASS 2, BLACK, per MIL-A-8625

ALLISCOM PA175 GPS ANTENNA Data Sheet

Model No. PA175

Feature High Efficiency - 90% Low Profile Design Low Loss - 0.2%

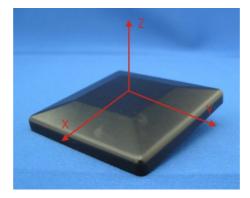
Description Allis Communications 1.575 MHz Antenna is an ideal solution for GPS reception. The Antenna is a GPS Passive Antenna for rebroadcasting GPS signal inside a building.

1. Specifications

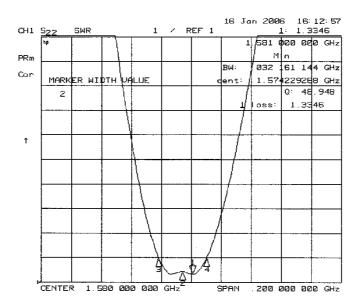
Antenna:	
Frequency	1575.42±3 MHz
VSWR	1.5 Max.
Bandwidth	20 MHz Min. @ -10 dB
Impedance	50 Ω
Efficiency	90.1% @1575MHz
Axial Ratio	3 dB Max. $\theta = 0^{\circ}$
Peak Gain	4 dBic Min.
Mechanical:	
Weight (Without Cable)	48 grams Max.
Size	66X 66 X18 mm
Connector	SMA Jack (Female)
Housing Color	Black
Housing Material	ABS
Environmental:	
Working Temperature	-40°C <t<+85°c< td=""></t<+85°c<>
Storage Temperature	-50°C <t<+95°c< td=""></t<+95°c<>

2. Shape and Dimension

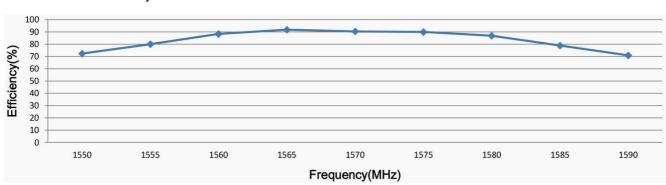
a. Dimension

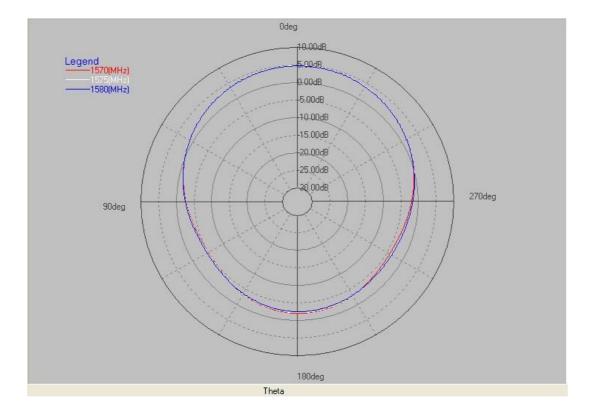


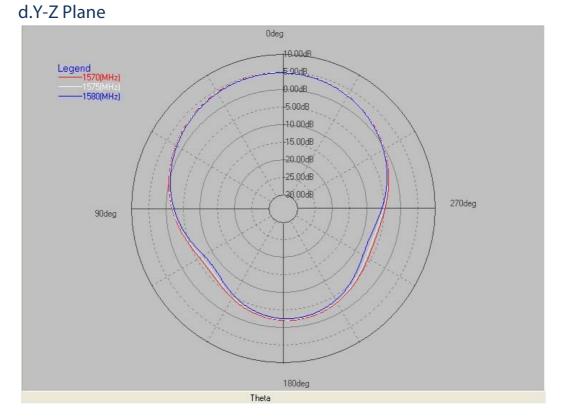
b. SMA Jack (Female) Connector

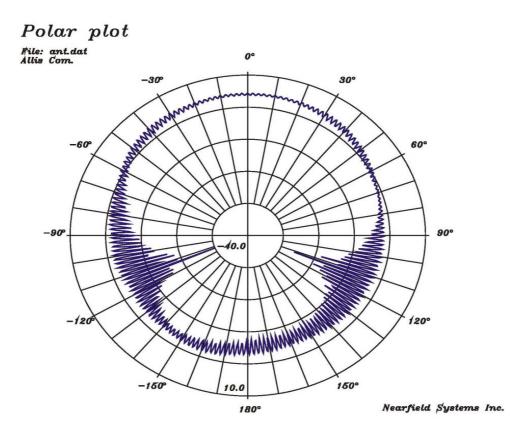


3. Antenna Characteristics


a.VSWR


ALLIS COMMUNICATIONS


b.Efficiency


c.X-Z Plane

e. Axial Ratio: 0.8dB

