GPS Booster Station Signal Strength Calculation

Reference file # 0516-EX-PL-2007

This GPS booster station re-radiates the GPS L1 (1575.42 MHz) signal. Calculations are performed per Section 8.3.28 of the NTIA regulations, where item 7 states "the maximum equivalent isotropically radiated power must be such that the calculated emissions are no greater than -140 dBm/24 MHz at a distance of 100 feet (30 meters) from the building where the test is being conducted." Additionally, building attenuation has been ignored. This calculation shows that the re-radiated signal strength is in compliance with the regulation.

(1)
$$P_{sig} = P_{Rec} + G_{rant} + G_{amp} - L_1 - L_2 - L_3 + G_{rrant} + L_S$$

Where: P_{sig} = Re-radiated signal strength 30 meters (m) outside the aircraft

P_{Rec} = Received power from GPS satellites (L1) = -130 dBm

G_{rant} = Aircraft top of fuselage active antenna, Trimble PN: 16248-50, antenna gain

 $= 5.0 \, dBi$

 G_{amp} = Aircraft top of fuselage active antenna amplifier gain = 48 dB, maximum

L₁ = Coaxial cable attenuation, top of fuselage antenna to bias tee

= X dB/m x Y m (cable type: RG142/U)

= 4.3 dB

 L_2 = Bias Tee insertion loss = 0.4 dB

L₃ = Coaxial cable attenuation, bias tee to bottom of fuselage

= X dB/m x Y m (cable type: RG142/U)

= 2.4 dB

G_{rrant} = Re-radiating antenna, Trimble PN: 16185-00, antenna gain

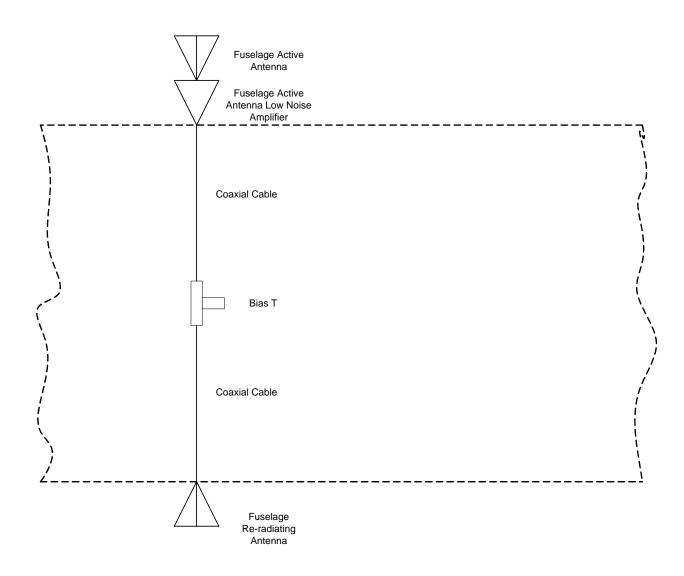
 $= 6.0 \, dBi$

L_S = Free space loss

(2)
$$L_S = 20Log(\lambda/4\pi(D))$$

Where: $\lambda = c/f = 3E8/1575.42E6 = 19.04E-2 m$

D = 30 meters (from re-radiating antenna)


= 30 m

Inserting the values for λ and D into equation (2) yields

$$L_S = 20Log(19.04E-2/4\pi(30.0))$$

= -65.9 dB

Inserting these values into equation (1) yields

$$P_{sig}$$
 = -130 + 5.0 + 48 - 4.3 - 0.4 - 2.4 + 6.0 - 65.9
= -144.0 dBm

