GPS Booster Station Signal Strength Calculation

Reference file # 0252-EX-PL-2006

This GPS booster station re-radiates the GPS L1 (1575.42 MHz) signal. Calculations are performed per Section 8.3.28 of the NTIA regulations, where item 7 states "the maximum equivalent isotropically radiated power must be such that the calculated emissions are no greater than -140 dBm/24 MHz at a distance of 100 feet (30 meters) from the building where the test is being conducted." Additionally, building attenuation has been ignored. This calculation shows that the re-radiated signal strength is in compliance with the regulation.

(1)
$$P_{sig} = P_{Rec} + G_{rant} + G_{amp} - L_1 - L_2 + G_{rrant} + L_S$$

Where:	P_{sig}	= Re-radiated signal strength 30 meters (m) outside the building
	P _{Rec}	= Received power from GPS satellites (L1) = -130 dBm
	G _{rant}	= Roof active antenna, MicroPulse PN: 1234NW/C, antenna gain = 4.5 dBi
	Gamp	= Roof active antenna amplifier gain = 55 dB
	L ₁	= Coaxial cable #1 attenuation, roof antenna to coaxial cable #2
		= 0.35 dB/m x 23 m (cable type: RG213/U)
		= 8.0 dB
	L ₂	= Coaxial cable #2 attenuation, coaxial cable #1 to re-radiating antenna = 24.3 dB/100 m x 0.225 (22.5 m cable length, Andrew PN: FSJ1-50) = 5.5 dB
	G	= Re-radiating antenna. Orbital-made, antenna gain = 1.0 dBi
	L _S	= Free space loss

(2) $L_{S} = 20Log(\lambda/4\pi(D))$

Where:

: λ = c/f = 3E8/1575.42E6 = 19.04E-2 m D = Distance (d) from antenna to outer wall in meters + 30 = 30.5 m + 30 = 60.5 m

Inserting the values for λ and D into equation (2) yields

 $L_{\rm S} = 20 \text{Log}(19.04\text{E}-2/4\pi(60.5))$ = -72.0 dB

Inserting these values into equation (1) yields

P_{sig} = -130 + 4.5 + 55 - 8.0 - 5.5 + 1.0 - 72.0 = -155.0 dBm

