NTIA Space record data form For WVSAT Satellites

NTIA requires the following data for space related experiments using government shared spectrum. For each transmit frequency, please provide the data for both ends of the transmit-receive link. Use Part A to describe the satellite to ground (or to Globalstar Constellation) information. Part B is for all ground to space transmit links.

Part A: Space to Earth Space Downlink Data

Satellite Globalstar Simplex Transmitter Data

WVSAT Simplex Transmitter

Transmit Frequency: 1616.25 MHz			
Satellite Name: WVSAT A, B, C, D			
Data Field	Data Answer	Description/Comments	
Transmit Power (PWR)	PWR = 0.078W	TRANSMIT POWER SUPPLIED TO THE ANTENNA INPUT TERMINAL, EXAMPLE, PWR01 W2 TRANSMIT POWER UNITS INCLUDE: W = WATT, K = KILOWATT, M = MEGAWATT	
Necessary Bandwidth	2.5 MHz	THE WIDTH OF FREQUENCY BAND WHICH IS JUST SUFFICIENT TO SUCCESSFULLY TRANSFER DATA. FORMULAS CAN BE FOUND IN ANNEX J OF THE NTIA MANUAL.	
RF Emissions Data		2-SIDED EMISSION BANDWIDTH VALUES	
-3 dB bandwidth	1 MHz		
-20 dB bandwidth	2.5 MHz		
-40 dB bandwidth	4 MHz		
-60 dB bandwidth	5 MHz		
Modulation Type	BPSK	THE METHOD USED TO SUPERIMPOSE DATA ON THE CARRIER, EXAMPLE, BPSK, QPSK, GMSK.	
Data Rate	100 bits/sec	INFORMATION DATA RATE	
Forward Error Correction Coding	Is FEC used? Yes □ No ⊠ FEC Type:, FEC Rate:,		
Total Symbol Rate	100 Symbols / sec	DATA RATE COMBINED WITH FEC AND FRAME OVERHEAD RESULTING IN THE TOTAL SYMBOL RATE AT THE INPUTE TO THE SYMBOL MAPPER/MODULATOR.	
Does transmitter have a beacon mode?	Yes □ No ⊠	BEACON MODE IS NORMALLY CONSIDERED A REGULAR AND PERIODIC SHORT DURATION TRANSMISSION THAT IS OFTEN USED TO ASSIST WITH TRACKING, DOPPLER COMPENSATION, OR SMALL SATELLITE IDENTIFICATION WHOSE TRANSMISSIONS ARE NOT LIMITED TO DURATIONS WHEN SUPPORTING GROUND STATIONS ARE VISIBLE.	

If transmitter has	Vac 🗆	!
If transmitter has	Yes □	
a beacon mode,	No □	
can the beacon be		
commanded off?	Does not apply	
Transmit Antenna	XAP = H	POLARIZATIONS INCLUDE: H = HORIZONTAL,
Polarization (XAP)		V = VERTICAL,
	(Actually faces away from Earth when	S = HORIZONTAL AND VERTICAL,
	transmitting).	L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR,
		T = RIGHT AND LEFT HAND CIRCULAR,
		J = LINEAR POLARIZATION
Transmit Antenna	XAZ = EC	NB= NARROWBEAM
Orientation (XAZ)		EC = EARTH COVERAGE
Transmit Antenna	ANTENNA GAIN4.31,	NTIA FORMAT (XAD), EXAMPLE, FOR 16 DBI
Dimension (XAD)	BEAMWIDTH110,	ANTENNA GAIN AND 30 DEGREE BEAMWIDTH XAD01 16G030B
	XAD = XAD01 04G110B	AAD01 100030B
Type of satellite	Type = NONGEOSTATIONARY	CHOOSE EITHER:
(State = SPCE)	7,	GEOSTATIONARY OR NONGEOSTATIONARY
(City = Geo or		
Nongeo)		
110118007		
For Geostationary	Longitude =	IF ANY SATELLITES ARE GEOSTATIONARY,
Satellites	Longitude =	REPORT ITS LATITUDE AS 000000N (XLA
Satemites	Does not apply	AND/OR RLA) AND REPORT ITS LONGITUDE IN
For	INCLINATION ANGLE52.6,	DDDMMSS FORMAT (XLG AND/OR RLG). IF ANY SATELLITES ARE NONGEOSTATIONARY,
Nongeostationary	APOGEE IN KILOMETERS 260 ,	REPORT ITS INCLINATION ANGLE, APOGEE
	PERIGEE IN KILOMETERS 180 ,	IN KILOMETERS, PERIGEE IN KILOMETERS,
(Orbital Data)		ORBITAL PERIOD IN HOURS AND FRACTIONS OF HOURS IN DECIMAL, THE NUMBER OF
	ORBITAL PERIOD IN HOURS1_AND	SATELLITES IN THE SYSTEM, THEN T01,
	FRACTIONS OF HOURS IN DECIMAL48,	EXAMPLE,
	THE NUMBER OF SATELLITES IN THE	REM04 *ORB,98.0IN00510AP00510PE001.58H01NRT0
	SYSTEM4,	1, AND FOR SPACE-TO-SPACE
		COMMUNICATIONS WITH ANOTHER
	ORB =	NONGEOSTATIONARY SATELLITE ADD AN ADDITIONAL
	ORB,51.6IN00260AP00180PE001.48H04NRT01	*ORB FOR IT ENDING IN R01, EXAMPLE, REM05
	ORB,52.0IN01414AP01414PE001.90H48NRR01	*ORB,72.9IN03209AP00655PE013.46H01NRR0
		1
For	Mean Local Time of Ascending Node	MLTAN IS THE ANGLE BETWEEN AN ORBIT'S
SunSynchronous	(MLTAN) =	ASCENDING NODE AND THE MEAN SUN, OFTEN
Nongeostationary		EXPRESSED AS UNIT OF TIME (HH:MM)
Orbits	Does Not Apply	
31.010		
Earth Station Data	Receiver) GlobalStar Satellite Constella	tion
State (RSC)	RSC = SPCE	
City Name (RAL)	RAL = NONGEO	
Latitude	Lat =	
(DDMMSS)	Does Not Apply	
		•

Longitude	Lon =	
(DDDMMSS)	Does Not Apply	
Receive Antenna Polarization (RAP)	RAP = RAP01 T	POLARIZATIONS INCLUDE: H = HORIZONTAL, V = VERTICAL, S = HORIZONTAL AND VERTICAL, L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION
Receive Antenna Orientation (RAZ)	RAZ Does Not Apply	THE EARTH STATION RECEIVER ANTENNA MINIMUM OPERATING ANGLE OF ELEVATION (RAZ), V00 TO V90, EXAMPLE, RAZ01 V00
Receive Antenna Dimensions (RAD)	ANTENNA GAIN12, BEAMWIDTH37, RAD = 12G037B	EXAMPLE ASSUMING NONGEOSTATIONARY, 16 DBI GAIN, 30 DEGREE BEAMWIDTH, AZIMUTHAL RANGE FROM 001-360, SITE ELEVATION OF 357 METERS, AND ANTENNA HEIGHT ABOVE TERRAIN OF 6 METERS: RAD01 16G030B001-360A00357H006
Receive Antenna Additional Information (For Parabolic Antennas)	ANTENNA DIAMETER, ANTENNA EFFICIENCY, Does Not Apply	
Number of Satellite Contacts Supported Per Day	24	NUMBER OF TIMES THE SATELLITE WILL COMMUNICATE WITH THE EARTH STATION IN THE SPACE TO EARTH DIRECTION (DOWNLINKS) EACH DAY
Expected Duration of Each Contact	5 minutes	AVERAGE DURATION OF EACH CONTACT
Supported Operations FCC notes:	Satellite Health and Status Data ⊠ Mission Payload Data ⊠	SATELLITE HEALTH AND STATUS TELEMETRY AND/OR MISSION PAYLOAD DATA

- 1. Use S-Note S945.
- 2. REM AGN, Cubesat, WVSAT

Part B: Earth Ground Station S Band Uplink Data:

Earth Station Transmitter Data (Required for Each Frequency at Each Earth Station Location)

Transmit Frequency	/ 2467 MHz	
State (XSC)	XSC = IN	
City Name (XAL)	XAL = UPLAND	
Latitude (DDMMSS)	Lat = 402533 N	
Longitude (DDDMMSS)	Lon = 853030 W	
Transmit Power (PWR)	PWR = .04W	TRANSMIT POWER SUPPLIED TO THE ANTENNA INPUT TERMINAL, EXAMPLE, PWR01 W2 TRANSMIT POWER UNITS INCLUDE: W = WATT, K = KILOWATT, M = MEGAWATT
Necessary Bandwidth	22 MHz	THE WIDTH OF FREQUENCY BAND WHICH IS JUST SUFFICIENT TO SUCCESSFULLY TRANSFER DATA. FORMULAS CAN BE FOUND IN ANNEX J OF THE NTIA MANUAL.
RF Emissions Data		2-SIDED EMISSION BANDWIDTH VALUES
-3 dB bandwidth	24.0 Mhz	
-20 dB bandwidth	24.5 Mhz	
-40 dB bandwidth	27.0 Mhz	
-60 dB bandwidth	31 MHz	
Modulation Type		THE METHOD USED TO SUPERIMPOSE DATA ON THE CARRIER, EXAMPLE, BPSK, QPSK, GMSK.
Data Rate	38.4 kbits/second	INFORMATION DATA RATE
Forward Error Correction Coding	Is FEC used? Yes □ No ⊠ FEC Type:, FEC Rate:,	
Total Symbol Rate	215 kbits/sec	DATA RATE COMBINED WITH FEC AND FRAME OVERHEAD RESULTING IN THE TOTAL SYMBOL RATE AT THE INPUTE TO THE SYMBOL MAPPER/MODULATOR.
Transmit Antenna Polarization (XAP)	XAP = XAP01 J	POLARIZATIONS INCLUDE: H = HORIZONTAL, V = VERTICAL, S = HORIZONTAL AND VERTICAL, L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION
Transmit Antenna Orientation (XAZ)	XAZ = XAZ01 V60	THE EARTH STATION TRANSMITTER ANTENNA MINIMUM OPERATING ANGLE OF ELEVATION (XAZ), V00 TO V90, EXAMPLE, XAZ01 V00

Transmit Antenna Dimensions (XAD)	ANTENNA GAIN30, BEAMWIDTH5, AZIMUTH 0001-360 SITE ELEVATION 276 HEIGHT ABOVE TERRAIN 2	EXAMPLE ASSUMING NONGEOSTATIONARY, 16 DBI GAIN, 30 DEGREE BEAMWIDTH, AZIMUTHAL RANGE FROM 001-360, SITE ELEVATION OF 357 METERS, AND ANTENNA HEIGHT ABOVE TERRAIN OF 6 METERS: XAD01 16G030B001-360A00357H006
	XAD01 30G005B001-360A00257H002	
Transmit Antenna Additional Information (For Parabolic Antennas)	ANTENNA DIAMETER 2 Meter, ANTENNA EFFICIENCY VSWR < 1.5,	
Number of Satellite Contacts Supported Per Day	Less than 1	NUMBER OF TIMES THE EARTH STATION WILL COMMUNICATE WITH THE STATELLITE IN THE EARTH TO SPACE DIRECTION (UPINKS) EACH DAY
Expected Duration of Each Contact	2 seconds	AVERAGE DURATION OF EACH CONTACT
Satellite Receive Sp	pecifications	
Receive Antenna Polarization (RAP)	RAP = RAP01 J	POLARIZATIONS INCLUDE: H = HORIZONTAL, V = VERTICAL, S = HORIZONTAL AND VERTICAL, L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION
Receive Antenna Orientation (RAZ)	RAZ = EC	NB= NARROWBEAM EC = EARTH COVERAGE
Receive Antenna Dimension (RAD)	ANTENNA GAIN2.5 BEAMWIDTH110 RAD = 02G110B	NTIA FORMAT(RAD), EXAMPLE, FOR 16 DBI ANTENNA GAIN AND 30 DEGREE BEAMWIDTH RAD01 16G030B
Type of satellite (State = SPCE) City = Geo or Nongeo	Type = SPCE Nongeo	CHOOSE EITHER: GEOSTATIONARY OR NONGEOSTATIONARY
For Geostationary Satellites	Longitude = Does Not Apply	IF ANY SATELLITES ARE GEOSTATIONARY, REPORT ITS LATITUDE AS 000000N (XLA AND/OR RLA) AND REPORT ITS LONGITUDE IN DDDMMSS FORMAT (XLG AND/OR RLG).

For Nongeostationary (Orbital Data)	INCLINATION ANGLE51.6, APOGEE IN KILOMETERS260, PERIGEE IN KILOMETERS180, ORBITAL PERIOD IN HOURS1 AND FRACTIONS OF HOURS IN DECIMAL48, THE NUMBER OF SATELLITES IN THE SYSTEM4, ORB,51.6IN00260AP00180PE001.48H04NRR01	IF ANY SATELLITES ARE NONGEOSTATIONARY, REPORT ITS INCLINATION ANGLE, APOGEE IN KILOMETERS, PERIGEE IN KILOMETERS, ORBITAL PERIOD IN HOURS AND FRACTIONS OF HOURS IN DECIMAL, THE NUMBER OF SATELLITES IN THE SYSTEM, THEN T01, EXAMPLE, REM04 *ORB,98.0IN00510AP00510PE001.58H01NRT01, AND FOR SPACE-TO-SPACE COMMUNICATIONS WITH ANOTHER NONGEOSTATIONARY SATELLITE ADD AN ADDITIONAL *ORB FOR IT ENDING IN R01, EXAMPLE, REM05 *ORB,72.9IN03209AP00655PE013.46H01NRR01
For SunSynchronous Nongeostationary Orbits	Mean Local Time of Ascending Node (MLTAN) = Does Not Apply	MLTAN IS THE ANGLE BETWEEN AN ORBIT'S ASCENDING NODE AND THE MEAN SUN, OFTEN EXPRESSED AS UNIT OF TIME (HH:MM)