Modulation Characteristics and Necessary Bandwidth -- Pursuant 47 CFR 2.1033(c)13, 2.1047(d) & 2.202

Digitally encoded speech or digital data is transmitted in four sub-channels at a 4 kHz rate using M-ary symbols mapped to predetermined fixed magnitude and phase components within 1 of 3 constellations associated with a particular modulation scheme. Figure 6-2 illustrates symbol mapping to one of the four QPSK sub-channels constellations. Figure 6-3 illustrates symbol mapping to one of the four 16QAM sub-channels constellation. Figure 6-4 illustrates symbol mapping to one of the four 64QAM sub-channels constellation. For Quad-QPSK modulation, this mapping adjusts the amplitude and phase variations of the baseband signal to one of 4 points on the constellation. For Quad-16QAM modulation, this mapping adjusts the amplitude and phase variations of the baseband signal to one of 16 points on the constellation. For Quad-64 modulation, this mapping adjusts the amplitude and phase variations of the baseband signal to one of 64 points on the constellation. The bandwidth of the modulating signals is limited by the pair of modulation limiting low pass filters within the modem block function of U801 (see Figure 4-2 in Exhibit 4.3). These filters serve to limit out-of-band and spurious emissions due to modulation. The necessary bandwidth of the sub-channels is limited to 4.8 kHz by the pair of modulation limiting low pass filters. The transfer response of these filters is depicted in Figure 6-1 where the filter excess bandwidth coefficient of 0.2 is shown.

This excess bandwidth leads to the necessary bandwidth calculation of $(1 + 0.2) \times (4 \text{ kHz}) = 4.8 \text{ kHz}$. Since the sub-channels are spaced 4.5 kHz apart, the necessary bandwidth of the composite 4 sub-channel symbol streams is $4.8 + (3 \times 4.5) = 18.3 \text{ kHz}$.