FEDERAL COMMUNICATIONS COMMISSION APPLICATION FOR SPECIAL TEMPORARY AUTHORITY This request for Special Temporary Authority (STA) is for a Existing STA

Applicant Name

Name of Applicant: Kestrel Signal Processing, Inc.

Address =

Attention:David BurgessStreet Address:1652 West Texas St., Ste. 228P.O. Box:FairfieldCity:FairfieldState:CAZip Code:94533Country:United StatesE-Mail Address:dburgess@kestrelsp.com

Best Contact =

Give the following information of person who can best handle inquiries pertaining to this application: Last Name: Baliga First Name: Roshan Title: Mr. Phone Number: 617-953-6563

Explanation

Please explain in the area below why an STA is necessary:

To be compatible with standard cellular subscriber equipment, we must test in a standard GSM band. To fully exercise the radio design, we must operate under realistic propogation conditions. If granted, this license supersedes and replaces our current STA, File Number 0538-EX-ST-2007.

Purpose of Operation =

Please explain Testing the control and traffic transactions with specifically configured mobile stations. We are developing the purpose of cellular network equipment and require an open-air test range. In typical tests, the experimental equipment will conduct control and traffic transactions with specifically configured mobile stations.

Information

Callsign:	WD9XCV		
Class of Station:	FX		
Nature of Service:	Experimental		

Location of proposed operation

Operation Start Date: 05/01/2008 **Operation End Date:** 11/01/2008

Manufacturer

List below transmitting equipment to be installed (if experimental, so state) if

additional rows are required, please submit equipment list as an exhibit:

Manufacturer	Model Number	No. Of Units	Experimental
Range Networks	QC1	2	No

Certification -

Neither the applicant nor any other party to the application is subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, because of a conviction for possession or distribution of a controlled substance. The applicant hereby waives any claim to the use of any particular frequency or electromagnetic spectrum as against the regulatory power of the United States because of the prvious use of the same, whether by license or otherwise, and requests authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended.) The applicant acknowledges that all statements made in this application and attached exhibits are considered material representations, and that all the exhibits part hereof and are incorporated herein as if set out in full in this application; undersigned certifies that all statements in this application are true, complete and correct to the best of his/her knowledge and belief and are made in good faith. Applicant certifies that construction of the station would NOT be an action which is likely to have a significant environmental effect. See the Commission's Rules, 47 CFR1.1301-1.1319.

Signature of Applicant (Authorized person filing form): Roshan Baliga

Title of Applicant (if any):

Date:

2008-03-20 00:00:00.0

City	State	Latitude	Longitu	ude	Mobile	Radius of Oper	ation
Dixor	n California	North 38 19 4	47 West 1	21 47 13		20.00	
atur	n: NAD 83						
s a d	irectional anten	na (other than ra	adar) used? No				
xhib	it submitted: N	lo					
a) W	idth of beam in	degrees at the h	alf-power point:				
b) O	rientation in hor	izontal plane:					
:) O /ill t iore	rientation in vert he antenna exte than 6 meters a	tical plane: nd more than 6 i bove the buildin	meters above the g g, or will the prop	ground, or if osed antenn	mounted on an ex a be mounted on a	isting building, n existing struc	will it extend ture other th
	ung: tes	wo ground to tin	of antonna in mot	arci 20.00			
a) U	verall height abo	ove ground to tip		level in met	10.00		
				level in met	CIS. 10.00		
c) Di	istanco to noaro						
		st aircraft landin	g area in kilometei	r s: 6.90			
d) Li	st any natural fo	ormations of exis	g area in kilometei sting man-made st	rs: 6.90 ructures (hil	ls, trees, water ta	nks, towers, etc	c.) which, in t
d) Li pinio	st any natural fo on of the applica	ormations of exis	g area in kilometer sting man-made st o shield the anten	rs: 6.90 ructures (hil na from aircr	ls, trees, water ta aft: None.	nks, towers, etc	c.) which, in t
(d) Li opinio Actio	stance to neares st any natural fo on of the applica n Frequency	ormations of exis nt, would tend t Station Class	g area in kilometer sting man-made st o shield the anten Output Power/ERP	rs: 6.90 ructures (hil na from aircr Mean Peak	ls, trees, water ta aft: None. Frequency Tolerance (+/-)	nks, towers, etc Emission Designator	c.) which, in t Modulating Signal
d) Li pinio Action	stance to neares st any natural fo on of the applica n Frequency 925.00000000- 928.00000000 f	ormations of exis ont, would tend t Station Class MHz FX	g area in knometer sting man-made st o shield the antenn Output Power/ERP 10.000000 W 40.000000 W	rs: 6.90 ructures (hil na from aircr Mean Peak P	ls, trees, water ta aft: None. Frequency Tolerance (+/-)	nks, towers, etc Emission Designator 270KGXW	Modulating Signal GSM Mobile Telephony
d) Li ppinio Action	stance to neares st any natural fo on of the applica n Frequency 925.00000000- 928.00000000 r City	ormations of exist ont, would tend t Station Class MHz FX State	g area in knometer sting man-made st o shield the antenn Output Power/ERP 10.000000 W 40.000000 W	rs: 6.90 ructures (hil na from aircr Mean Peak P Longitude	ls, trees, water tar raft: None. Frequency Tolerance (+/-) Mobile	nks, towers, etc Emission Designator 270KGXW Radius of Operation	C.) which, in t Modulating Signal GSM Mobile Telephony
(d) Li opinio Actio	stance to neares st any natural fo on of the applica n Frequency 925.00000000- 928.00000000 r City Dixon	Stations of exist ant, would tend t Station Class MHz FX State California	g area in knometer sting man-made st o shield the antenn Output Power/ERP 10.000000 W 40.000000 W Latitude	rs: 6.90 ructures (hil na from aircr Mean Peak P Longitude West 121 47 13	ls, trees, water ta raft: None. Frequency Tolerance (+/-) Mobile	nks, towers, etc Emission Designator 270KGXW Radius of Operation 20.00	C.) which, in t Modulating Signal GSM Mobile Telephony
d) Li opinio Action lew	stance to neares st any natural fo on of the applica n Frequency 925.000000000 928.00000000 r City Dixon n: NAD 83	ormations of exist ant, would tend t Station Class MHz FX State California	g area in knometer sting man-made st o shield the antenn Output Power/ERP 10.000000 W 40.000000 W Latitude North 38 19 47	rs: 6.90 ructures (hil na from aircr Mean Peak P Longitude West 121 47 13	ls, trees, water tar raft: None. Frequency Tolerance (+/-) Mobile	nks, towers, etc Emission Designator 270KGXW Radius of Operation 20.00	C.) which, in t Modulating Signal GSM Mobile Telephony
d) Li pinio cction ew Patur s a d	stance to neares st any natural fo on of the applica n Frequency 925.00000000- 928.00000000 r City Dixon n: NAD 83 lirectional anten	st aircraft landin prmations of exis int, would tend t Station Class MHz FX State California na (other than ra	g area in kilometer sting man-made st o shield the antenin Output Power/ERP 10.000000 W 40.000000 W Latitude North 38 19 47	rs: 6.90 ructures (hil na from aircr Mean Peak P Longitude West 121 47 13	ls, trees, water tar raft: None. Frequency Tolerance (+/-) Mobile	nks, towers, etc Emission Designator 270KGXW Radius of Operation 20.00	C.) which, in t Modulating Signal GSM Mobile Telephony
d) Li pinic cctio lew Patur s a d xhib	stance to neares st any natural fo on of the applica n Frequency 925.00000000- 928.00000000 r City Dixon n: NAD 83 lirectional anten it submitted: N	nt (other than ra	g area in kilometer sting man-made st o shield the antenn Output Power/ERP 10.000000 W 40.000000 W Latitude North 38 19 47	rs: 6.90 ructures (hil na from aircr Mean Peak P Longitude West 121 47 13	ls, trees, water tar raft: None. Frequency Tolerance (+/-) Mobile	nks, towers, etc Emission Designator 270KGXW Radius of Operation 20.00	Modulating Signal GSM Mobile Telephony
d) Li pinic action lew Datur s a d sxhib a) W	stance to neares st any natural fo on of the applica n Frequency 925.00000000- 928.00000000 f City Dixon n: NAD 83 lirectional anten it submitted: N Vidth of beam in	st aircraft landin prmations of exis int, would tend t Station Class MHz FX State California na (other than ra lo degrees at the h	g area in knometer sting man-made st o shield the antenn Output Power/ERP 10.000000 W 40.000000 W Latitude North 38 19 47 adar) used? No alf-power point:	rs: 6.90 ructures (hil na from aircr Mean Peak P Longitude West 121 47 13	ls, trees, water tar raft: None. Frequency Tolerance (+/-) Mobile	nks, towers, etc Emission Designator 270KGXW Radius of Operation 20.00	C.) which, in t Modulating Signal GSM Mobile Telephony

(c) Orientation in vertical plane:

Will the antenna extend more than 6 meters above the ground, or if mounted on an existing building, will it extend more than 6 meters above the building, or will the proposed antenna be mounted on an existing structure other than a building? Yes

(a) Overall height above ground to tip of antenna in meters: 20.00

(b) Elevation of ground at antenna site above mean sea level in meters: 10.00

(c) Distance to nearest aircraft landing area in kilometers: 6.90

(d) List any natural formations of existing man-made structures (hills, trees, water tanks, towers, etc.) which, in the opinion of the applicant, would tend to shield the antenna from aircraft: None

Action	Frequency	Station Class	Output Power/ERP	Mean Peak	Frequency Tolerance (+/-)	Emission Designator	Modulating Signal
New	925.0000000- 928.00000000 kHz	FX	10.000000 W 40.000000 W	Ρ		270KGXW	GSM Mobile Telephony