Application of KVH Industries, Inc.

Experimental Special Temporary Authorization V3 ESV Terminal Description and Concept of Operation

Introduction

KVH Industries, Inc. ("KVH") has developed a small aperture, broadband, highly efficient and affordable earth stations onboard vessels ("ESV") terminal for use with its global maritime communications network. This ESV – the KVH V3 terminal – operates in Ku-band FSS frequencies (14.0-14.5 GHz transmit, 11.7-12.2 GHz receive). The V3 terminal will automatically search for and acquire the designated satellite, and maintain precise pointing via automatic control of the azimuth, elevation and polarization angles.

This application seeks an experimental special temporary authorization ("STA"), pursuant to Section 5.61 of the Commission's rules, 47 C.F.R. § 5.61, to test and operate a network of small ESV terminals that will communicate in the Ku-band with the following satellite points of communication: AMC-15 at 105° W.L, AMC-21 at 125° W.L., and GE-23 at 172° E.L. The proposed operation will be used to test the delivery of a two-way broadband channel to maritime vessels using the new, small-diameter antenna terminals.

An experimental license is required for KVH to refine these antenna systems and the accompanying VSAT system parameters during operations. Many of the parameters cannot be effectively simulated in a lab environment. In addition, the live operations will allow KVH to detect and correct problems that were not originally anticipated. The resolution of all potential problems is crucial to the success of this product.

Under this authorization, KVH would deploy ten (10) ESV terminals to provide an accurate measure of usage patterns and operational profiles. This information is vital to development of an operational VSAT system by providing bandwidth requirements, hub resources, number of access queues, etc. In addition, network management and terminal operating issues may not manifest themselves with a smaller number of terminals. The demonstrations will operate on an unprotected, non-interfering basis.

The proposed experimental operations will be conducted within the continental United States either at specific test facilities for a limited duration or mounted on water-borne vessels. KVH requests a period of authorization of six months.¹

¹ This experimental STA application is a refiling of File No. 0591-EX-ST-2010, which was dismissed without prejudice on January 4, 2011 based on concerns raised by the Federal Aviation Administration and Air Force. Counsel for KVH has contacted spectrum management staff from the FAA and Air Force and cleared potential concerns. As a result, KVH believes that this follow-on application can be considered on an expedited basis.

Description of Antenna

KVH has developed the small aperture, broadband, highly efficient and affordable V3 ESV terminal for use with its global ESV network. The ESV terminal operates in the Ku FSS frequency band, 14.0-14.5 GHz transmit and 11.7-12.2 GHz receive. The antenna is a 37 cm parabolic reflector with a rear-fed sub-reflector feed assembly design. The ESV terminal will automatically search for and acquire the designated satellite and maintain precise pointing via automatic control of the azimuth, elevation and polarization angles. The RF equipment is integrated into the base of the terminal and includes a 3 watt block upconverter.

Figure 1: KVH 37cm Ku-band antenna

Description of Planned Experimental Operations

As is shown in Figure 2 below, the V3 terminal will be tested within KVH's existing broadband mobile maritime service network, authorized by the Commission.² KVH is seeking authorization to operate within the continental United States (CONUS), and

² See File No. SES-LIC-20060824-01502 (Call Sign E060335); File No. SES-LIC- 20070504-00563 (Call Sign E070085); and File No. SES-LIC-20081104-01450 (Call Sign E090001).

adjacent waters within the satellite coverage zones, for evaluation and demonstration purposes. The ESV terminals may be tested in any of the following modes: (i) fully stationary; (ii) on a three-axis table to test antenna tracking; (iii) on a ground vehicle rooftop for in-motion testing; and (iv) on a vessel operating within CONUS or adjacent waters.

Receive-only tests will be conducted first to verify antenna performance and for set-up of any transmit operation. Two-way tests requiring transmit operation will then be performed to evaluate, optimize and demonstrate return link performance as well as the user experience.

The testing will involve two-way broadband connectivity. Ultimately, the target end users of this terminal are small and medium size vessels, over 40 feet in length overall. These prospective users include both commercial/private customers, such as fishing boats and leisure vessels, and providers of public services such as the Department of Homeland Security and the Coast Guard. Testing will also include high-speed Internet access for applications such as e-mail, web access, voice, and distance learning.

The proposed ESV uplink return transmission (inbound) channel supports data rates of 32 kbit/s, 64 kbit/s, 128 kbit/s, 256 kbit/s, and 512 kbit/s. The ESV uplink transmission utilizes a spread spectrum modulation. This authorization will require channel bandwidths of 18 MHz and 36 MHz. The forward channel (outbound from the hub earth station to the ESV) will be between 3-10 Mbits/s aggregate with individual end user rates at 0.5-2Mbit/s. The forward channel is also spread over the 18 MHz or 36 MHz channel and is overlaid onto the same transponder spectrum using a technique called PCMA.³

KVH would like to operate the terminals with the following satellites:

AMC-15 @ 105° W.L. AMC-21 @ 125° W.L. GE-23 @ 172° E.L.

The ESVs will communicate with existing hub earth stations in Miami, Florida,⁴ Carlsbad, California,⁵ and Kapolei, Hawaii.⁶ KVH will control all V3 operations using its standard network control capabilities and network management partner, ViaSat, Inc.

³ Paired Carrier Multiple Access is a proprietary technique developed by ViaSat for their spread spectrum ArcLight service.

⁴ Call Sign E040267.

⁵ Call Sign E9030131.

⁶ Call Sign E010236.

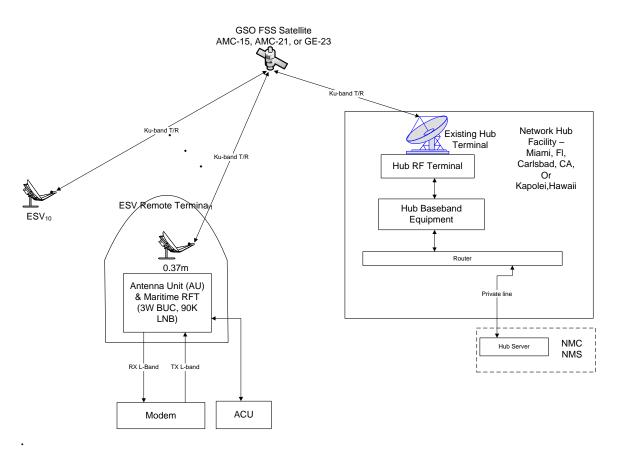


Figure 2 – ESV Network Architecture

For purposes of this experimental STA application, the ESV terminal will not operate within line-of-sight vicinity of Radio Astronomy Service (RAS) sites or the Tracking and Data Relay Satellite System (TDRSS) for space research conducted at White Sands, New Mexico and the US Naval Research Lab at Blossom Point, Maryland.⁷

Off-Axis EIRP Analysis

The data rates transmitted from the terminal will vary from 32 kbits/s to 512 kbits/s. Additionally, the ESVs will transmit using CRMA spreading⁸ over either an 18 MHz channel bandwidth or a 36 MHz channel bandwidth. The off-axis EIRP spectral density of the KVH ESV terminal is shown in the following Figures 3 and 4. Note that a calculated worst case aggregate EIRP occurs when N=13 users for the 36 MHz channel and when N=6 users for the 18 MHz channel. KVH will ensure that the aggregate EIRP levels do not exceed the limits specified for Ku-band ESVs in Section 25.222 of the Commission's rules.

⁷ KVH will accept technical limitations imposed on other Ku-band ESV operations necessary to protect RAS and TDRSS operations. *See* 47 C.F.R. § 25.222(c), (d) and Coordination Agreement with the National Science Foundation, submitted with a letter dated November 20, 2008 in IBFS File No. SES-LIC-20081104-01450.

⁸ CRMA, or Code Reuse Multiple Access, is a ViaSat proprietary spread spectrum technique, similar to CDMA, used in the ArcLight satellite system.

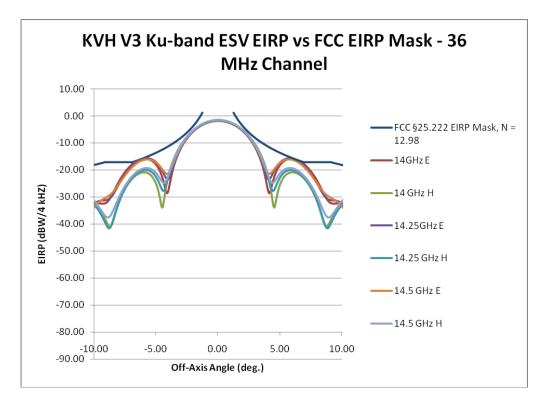


Figure 3. V3 Off-Axis EIRP Spectral Density – 36 MHz Channel

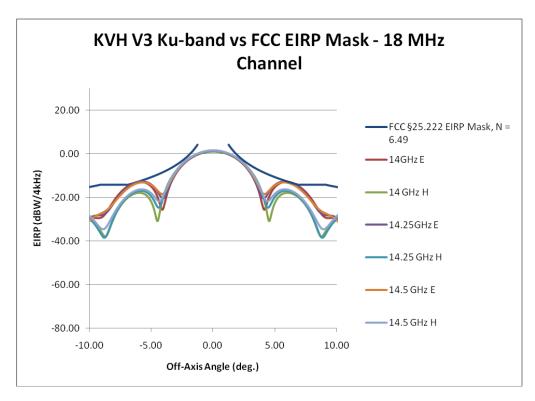


Figure 4. V3 Off-Axis EIRP Spectral Density – 18 MHz Channel

Pointing Accuracy

The ESV V3 terminal will utilize a motion stabilized tracking antenna and a direct sequence spread spectrum (DSSS) burst modem manufactured by ViaSat to access the satellite.

The testing will include up to ten (10) terminals, each using a common spreading code and a random access method called code reuse multiple access ("CRMA") to access the satellite. CRMA is closely analogous to the more generally understood code division multiple access ("CDMA") multiple access method, but differs in that all terminals use a common spreading code rather than a number of individual codes for each transmitter. Individual bursts are distinguished by time difference of arrival. The use of this spreading technique allows the RF spectral density for each ESV to be significantly lower that typical TDMA systems operating at Ku-band.

The antenna system utilizes a conical scanning function and rate gyros to stabilize the antenna and keep it pointed properly at the desired satellite. The conscan is currently set to worst case 0.4° from boresight. The dynamic pointing error for the vessel accelerations expected during testing operation is expected to be less than 0.2° s one sigma. Thus the total expected mean pointing error for each vessel while under way, including both conscan and dynamic error, is 0.4° with a standard deviation of 0.2° .

During the small percentage of time when conditions cause the antenna pointing error to exceed the specified maximum pointing error limit of 1.0°, the antenna system will send a message to the modem, and the modem will inhibit transmission until the aggregate conscan plus dynamic pointing error value is back to within 0.6°. The time lag from detection of exceedance of mispointing to time when transmit is inhibited will be less than 100 ms. For the purposes of this authorization this error limit of 1° is the declared maximum antenna pointing error as described in Section 25.222(b)(1)(iv)(A).

As described above, the ESVs in this network use a spread spectrum multiple access technique whereby the individual off-axis EIRP density of each ESV terminal is well below the maximum aggregate network limit. Thus, each antenna individually will not generate harmful levels of interference – even if the antenna was pointed directly at an adjacent satellite. Random pointing errors across this ESV fleet will not cause objectionable levels of adjacent satellite interference because the antenna on each ESV will be pointing in a different direction with a different error component. There is an extremely low probability that multiple antennas will be mispointed at an adjacent satellite at the same time in such a way that their power results in harmful interference levels. Because the pointing error is random and momentary, each ESV antenna actually has a higher likelihood of being pointed away from the geostationary satellite arc than at an adjacent satellite in the arc.

Figure 5 below shows the ESV off-axis EIRP considering a 1.0 degree pointing error. As can be seen the EIRP density is significantly lower that the Section 25.222 mask for an individual ESV terminal.

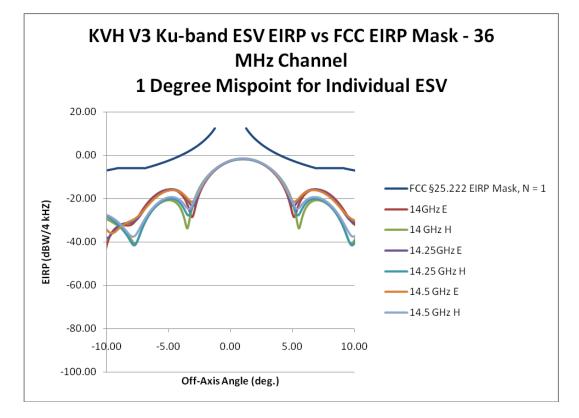


Figure 5 – V3 Terminal Off-axis EIRP with 1 degree pointing error vs 25.222 limit

Protection of Other Users in the 14.0–14.5 GHz Band

Protection of Fixed-Satellite Service. The FCC has established service rules applicable to Ku-band ESV operations, which define operational limits in Section 25.222. As discussed above, KVH's terminals will operate in such a manner that the off-axis EIRP levels are no greater than the levels established for ESV operations, which are consistent with those produced by routinely licensed VSAT earth stations. To the extent that any adjacent satellite operator experiences unacceptable interference from KVH's experimental operations, KVH will cease terminal transmissions immediately. Additionally, since this testing will be performed under the control of the KVH ESV network operations center there will be a record of the ESV's location and operating parameters as specified in Section 25.222(a)(4).

Protection of Potential NGSO FSS Systems. KVH acknowledges that nongeostationary orbit ("NGSO") systems are also permitted to operate in the Ku-band. However, no such systems are currently authorized or plan to operate within the period contemplated for the proposed experimental operations.

Protection of Terrestrial Radio Services. KVH has examined current spectrum use in the 14.0-14.5 GHz band and has determined that there are no active FCC-licensed terrestrial services in this band in North America with which its proposed operations would potentially conflict.

Protection of the Radio Astronomy Service. For purposes of this experimental application, in addition to complying with its prior coordination agreement with NSF and complying with Section §25.222(d) of the rules, KVH terminals will not operate within line-of-sight vicinity of Radio Astronomy sites and during observation periods.

Protection of Space Research Service. KVH recognizes the utilization of the frequency band from 14.0-14.05 GHz and the possible use of the band from 14.05-14.2 GHz allocated to the National Aeronautics and Space Administration ("NASA") Tracking and Data Relay Satellite System ("TDRSS") for space research conducted at White Sands, New Mexico and Blossom Point, Maryland. For purposes of this experimental STA application, KVH will avoid AES operation within line-of-sight vicinity of these earth stations.⁹

Resolution 902. KVH will comply with the ESV emission limitations specified for the Ku-band in Annex 2 to Resolution 902. For each ESV terminal the maximum EIRP density toward the horizon will not exceed -0.79 dBW/MHz and the maximum EIRP toward the horizon will be 11.8 dBW^{10} .

⁹ See 47 C.F.R. § 25.222(c).

¹⁰ Resolution 902 Annex 2 specifies a maximum of 12.5 dBW/MHz Horizon EIRP density and 16.3 dBW Horizon EIRP for ESVs operating in the 14.0-14.5 GHz band.

SUMMARY OF TECHNICAL PARAMETERS

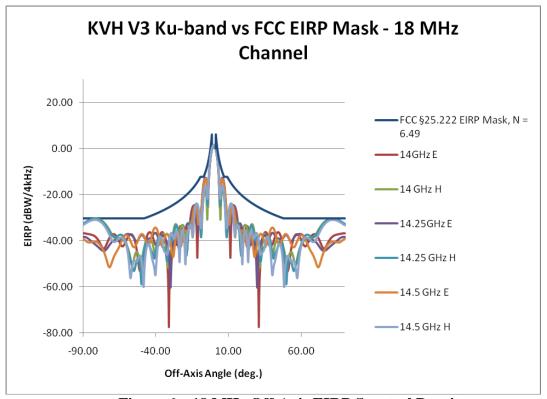
The return link channel shall support data rates for of 32 kbit/s, 64 kbit/s, 128 kbit/s, 256 kbit/s, and 512 kbit/s. The forward channel will be operated with data rates of 3-10 Mbits/s aggregate with individual end user rates between 512- 2Mbit/s. A summary of the V3 operating parameters is shown in the tables below:

Antenna diameter	37 cm
Type of Antenna	Parabolic rear-fed
Peak Power (SSPA)	3 watts
Transmit Bandwidth	18, 36 MHz
Transmit Gain	33 dBi at 14.GHz
EIRP	38 dBW
Transmit Data Rate	32 kbps to 512 Mbps
Transmit Polarization	Horizontal or Vertical
Transmit Max PSD	<10 dBW/4kHz
Transmit Azimuth,	3.5 degrees
Elevation Beamwidth	
Receive G/T	10 dB/K minimum
Receive Bandwidth	500 MHz
Receive Polarization	Dual Vertical and Horizontal

V3 ESV Terminal Parameters

Azimuth	continuous coverage over full 360°
Elevation	10 to 80° antenna elevation
Position accuracy	Static pointing error 0.4° RMS (AZ); 0.6° RMS (AZ) in-motion, Declared Maximum Pointing Error 1.0°)
Dynamic Tracking capability	Roll: +/-25° at 8 second period Pitch: +/-15° at 5 second period Yaw: +/-8° at 50 second period Azimuth Turn rate: 12° /s and 15° /s ² acceleration

Antenna Control Parameters


Maximum power at Feed	3	W
Channel; Bandwidth	36	MHz
RF Power Density at Flange	-34.8	dBW/4,kHz
Maximum EIRP Density toward the Horizon	-3.79	dBW/MHz
Maximum EIRP toward the Horizon	11.77	dBW
Maximum Number Simultaneous Users N	12.98	

Uplink Transmission Parameters - 36 MHz Channel

Maximum power at Feed	3	W
Channel Bandwidth	18	MHz
RF Power Density at Flange	-31.8	dBW/4,kHz
Maximum EIRP Density toward the Horizon	-0.8	dBW/MHz
Maximum EIRP toward the Horizon	11.8	dBW
Maximum Number Simultaneous Users N	6.49	

Uplink Transmission Parameters - 18 MHz Channel

A sample link analysis for AMC-15 is included in Annex A.

Additional Off-Axis EIRP Spectral Density Plots

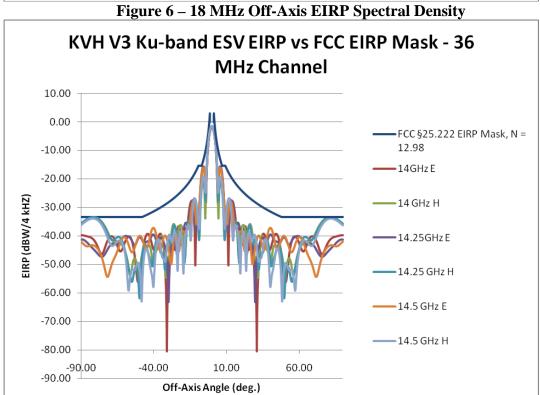


Figure 7 – 36 MHz Channel Off-Axis EIRP Spectral Density

Points of Contact

For purposes of this authorization, the KVH terminals will be operated under KVH's full supervision and control. The points of contact for the planned experimental operations are:

Marc Edwards Program Manager KVH Industries, Inc. 401.845.2403 Email: medwards@kvh.com

Mr. Edwards will have the ability and authority to cease all transmissions from the terminals wherever they are located.

For filing issues involving this authorization request please contact:

Carlos Nalda Squire, Sanders & Dempsey L.L.P. 1201 Pennsylvania Ave, NW Suite 500 Washington, DC 20004 Office: (202) 626-6659 Fax: (202) 626-6780 Cell: (571) 332-5626 Email: <u>cnalda@ssd.com</u>

For technical issues involving this authorization request:

Kenneth G. Ryan, P.E., Skjei Telecom, Inc. Regulatory Engineering Consultant Office: (703) 917-4020 Fax: (703) 917-0098 Cell: (703) 919-0361 Email: ken@skjeitelecom.com

Annex A

Sample Link Analysis

SYSTEM PARAMETERS		Mobile Antenna Transmit Characteristics (Re		Hub Antenna Transmit Characteristics (Forward Up	link)
Uplink Frequency	14.18 GHz	Antenna Type	KVH		
Forward Uplink Availability	99.75%	Uplink Frequency	14.18 GHz	Uplink Frequency	14.18 GHz
Return Uplink Availability	99.75%	Antenna Diameter	0.37 m	Antenna Diameter	4.5 m
Downlink Frequency	11.88 GHz		17.5 wavelengths		212.7 wavelengths
Forward Downlink Availability	99.75%	Aperture efficiency	68%	Antenna efficiency	65%
Return Downlink Availability	99.75%	Antenna peak gain	33.1 dB	Antenna peak gain	54.6 dB
Mobile Site	Var - Seattle	CW Sat Transmit Power	3 W	Max HPA Transmit Power	400 W
Hub Site	Carlsbad	Transmission losses	-1.3 dB	Transmission losses	-2.53 dB
Vehicle Inclination	0 °	Antenna Ohmic Losses	-0.1 dB	Antenna Ohmic Losses	0 dB
F/R Transponder Input Ratio	18.4 dB	Radome Loss	-0.8 dB	RadomeLoss	0 dB
alpha power	0.01432	CW Sat EIRP at peak	35.7 dBW	CWEIRP	78.1 dBW
PCMA Cancellation C/I	25 dB	OBO	0.00 dB	OBO	-12.6 dB
Forward Link	20 00	Pointing loss, etc.	-0.07 dB	Pointing loss, etc.	-0.5 dB
Data Rate	4.00E+06 bps 4000000	EIRP (not including pointing loss)	35.71 dBW	EIRP (not including pointing loss)	65.05 dBW
Bit Error Rate	1 x 10E-7 QPSK 1/3	Clear-Sky PFD	-127.07 dBW/m2	Clear-sky PFD	97.94 dBW/m2
Eb/No Required	1.7 dB	Available UPC Boost	0.0 dB	Available UPC Boost	12.6 dB
C/No Required	67.72 dB-Hz	UPC Error	0 dB	UPC Error	0.0 dB
Modulation Type	QPSK DSSS PI/2 BPSK 3	HPA Suppression	0.0 dB	HPA Suppression	0.0 dB
FEC Factor	Rate 1/3 Turbo	Antenna Crosspol Discrimination	15.0 dB	Antenna Crosspol Discrimination	30.0
Spread Factor : Spread Signal Rate	2 28800 kcps	Pointing Error (Tx and Rx)	0.31 deg	Half-power beamwidth	0.3 deg
Carrier Spacing: Authorized BW		Mobile Antenna Receive Characteristics (For		Hub Antenna Receive Characteristics (Return Dowr	
Bits per symbol	0.3333 VSAT Proprietary FL	Antenna Type	KVH	Hub Antenna Receive Characteristics (Return Down	uu uky
Signal Rate	14400 kbaud/s	Downlink Frequency	11.88 GHz	Downlink Frequency	11.88 GHz
Return Link	14400 KDadd/5	Antenna Diameter	0.37 m	Antenna Diameter	4.5 m
Data Rate	128000 bps	Antenna Diameter	14.7 wavelengths	Antenna Diameter	4.5 m 178.2 wavelengths
Packet Error Rate	1 x 10E-3	A	60%	A	66%
		Aperture efficiency		Antenna efficiency	
Eb/No Required	2.25 dB 53.32 dB-Hz	Antenna peak gain	31.0 dB	Antenna peak gain	53.2 dB 0.94 dB
C/No Required	53.32 dB-HZ GMSK DSSS	LNB Noise Figure	0.94 dB 290 K	LNB Noise Figure	0.94 dB
Modulation Type		Reference Temperature		Input Losses	
FEC Factor	Rate 1/3 TC	Antenna Ohmic Losses	-0.1 dB	Antenna Ohmic Losses	0 dB
Alpha_MAI	0.859	Radome Ohmic Loss	-0.10 dB	Radome Loss	0 dB
Beta_MAI	0.712 108	Clear-sky Antenna Temperature	30 K	Clear-sky Antenna Temperature	35 K
Spread Factor : Spread Signal Rate	88 33792 kcps	Clear-sky Tsys	117.0 K	Clear-sky Tsys	105.1 K
Carrier Spacing	1	Radome non-ohmic loss	-0.10 dB	Pointing loss, etc.	-0.5 dB
Bits per symbol	0.3333	Antenna non-ohmic loss	0.0 dB	Antenna non-ohmic loss	0.0
Transponder Bandwidth	24060 kHz	Pointing Loss	-0.1 dB	Clear-sky G/T	32.4 dB/K
Occupied Bandwidth	29027 kHz	Clear-sky G/T	10.20 dB/K	Half-power beamwidth	0.4 deg
Signal Rate	384.0 kbaud/s	Antenna Crosspol Discrimination	15.0 dB	Antenna Crosspol Discrimination	30.0 dB
Number of Return Links	10 1.00E+01	Spacecraft Transponder		Desired Transponder OBO point	-2 dB
		Spacecraft	AMC-15	Additional Forward Link Backoff	0
Fwd Link Total Availability	99.50%	Satellite Longitude	255 deg E	IBO - Clear Sky Uplink	-5.0 dB
Return Link Total Availability	99.50%	Transponder Total Bandwidth	36 MHz	IBO - Rain Uplink	-5.0 dB
LINK STATUS	Clear Sky U/L Rain D/L Rain	Transponder Allocated Bandwidth	36 MHz	OBO - Clear Sky Uplink	-2.0 dB
Forward Link Margin	4.4 4.4 3.1	Forward CW Sat EIRP	46 dBW	OBO - Rain Uplink	-2.0 dB
Return Link Margin	2.05 0.13 1.98	Forward G/T	1.25 dB/K	Fwd Transponder Suppression	-0.51 dB
Regulatory Limits	Performance Rgmt.	Return CW Sat EIRP	48.4 dBW	Rtn Transponder Suppression	-1.75 dB
Return Agg. Ant. Flange Pwr Density	-23.78 -23.02 dBW/4kHz	Return G/T	2 dB/K	Fwd EIRP- Clear Sky Uplink	43.5 dBW
	20.70 -20.02 GDT04NTZ	Isolam OZI	ZUDIT	i wa Lira - Gioar orgi opilitik	10.0 QD V V
Return Uplink Off-axis Pwr Density	4.0 16 dBW/40kHz	Forward Min SED	-92.94 dBW/m2	Rtn EIRP - CS U/L - Single Carrier	16.3 dBW

Forward Link Parameters	Uplink	Downli nk	
Site	Carlsba d	Var - Seattl e	
Frequency, GHz	14.18	11.88	
Availability	99.75%	99.75 %	
Antenna Size, m	4.5	0.37	
Modulation	QPSK	QPSK DSSS	
Coding	Rate 1/3	Rate 1/3 Turbo	
Data rate (khns)	40	4000	

		Rain U/L	Rain U/L	Clear Sky U/L
EndtoEnd Link Budget	Clear Sky	Rain D/L	Clear Sky D/L	Rain D/L
Uplink C/No	89.2	89.2	89.2	89.2 dBHz
Uplink C/Io	91.9	91.9	91.9	91.9 dBHz
Downlink C/No	76.6	73.7	76.6	73.7 dBHz
Downlink C/lo	74.2	74.2	74.2	74.2 dBHz
Total C/(No+Io)	72.1	70.8	72.1	70.8 dBHz
Required C/(No+Io)	67.7	67.7	67.7	67.7 dBHz

Uplink C/No budget	Clear Sky	Rain U/L
Uplink EIRP (incl. UPC compensation)	65.5	66.9 dBW
Hub Pointing Loss	0.5	0.5 dB
Path Loss	207.0	208.3 dB
Spacecraft G/3925	1.25	1.25 dB/K
Boltzmann's constant	228.6	228.6 dBW/K/Hz
Uplink C/No Transponder input	87.93	87.9 dBHz
Carrier Suppression	0.51	0.51 dB
Noise Suppression	1.74	1.74 dB
Uplink C/No Transponder output	89.2	89.2 dBHz

			Rain U/L	Clear Sky U/L Rain D/L
Downlink C/No budget	Clear Sky	Rain	Clear Sky D/L	Clear Sky U/L Kall D/L
Downlink EIRP	43.49	43.5	43.5	43.5 dBW
Path Loss	205.71	206.9	205.7	206.9 dB
Mobile Clearsky G/T	10,20	10.2	10.2	10.2 dB/K
Mobile Clearsky G/T Rain Noise Temperature Increase	^{8/284} 1.75 0	1.7	0	1.7 dB
Boltzmann's constant	228.60	228.6	228.6	228.6 dBW/K/Hz
Downlink C/No	76.58	73.7	76.6	73.7 dBHz

Uplink C/Io terms	Clear Sky	Rain U/L
ASI	93.9	93.9 dBHz
CrossPol	94.6	94.6 dBHz
Uplink HPA IM	100	100 dBHz
Uplink C/Io Transponder input	90.7	90.7 dBHz
Carrier Suppression	0.51	0.51 dB
Noise Suppression	1.74	1.74 dB
Uplink C/lo Transponder output	91.9	91.9 dBHz

		Rain U/L	Rain U/L	Clear Sky U/L
Downlink C/Io terms	Clear Sky	Rain D/L	Clear Sky D/L	Rain D/L
ASI	74.50	74.50	74.50	74.50 dBHz
CrossPol	88.06	88.06	88.06	88.06 dBHz

Uplink Path Loss	Clear Sky	Rain U/L
Freespace Path Loss	206.87	206.9 dB
Gaseous Attenuation	0.10	0.10 dB
Rain Attenuation	0	1.2 dB
Cloud Attenuation	0	0.15 dB
Scintillation	0	0.16 dB
Total Attenuation	207.0	208.3 dB

Uplink Propagation Model	
Frequency	14.18 GHz
Availability	99.75%
Satellite Longitude	255.0 °E
Site Location	Carlsbad
Site Latitude	33.2 °N
Site Longitude	242.7 °E
Site Altitude	0.0 km
Antenna efficiency	65%
Antenna diameter	4.5 m
Polarization	V
Slant Range	37141.4 km
Elevation Angle	49.21 °
Rain Height	3.2 km
Rain Intensity @ 0.01%	25.1 mm/hr
Total Columnar Content of Liquid @ 0.01	0.6 kg/m2
Wet term of refraction coindex	45.3
Temperature	289.6 K
Water Vapor Content	7.2 g/m3
Polarization Angle	18.1 °

Downlink Path Loss	Clear Sky	Rain D/L	
Freespace Path Loss	205.60	205.6 dB	
Gaseous Attenuation	0.11	0.11 dB	
Rain Attenuation	0	1.0 dB	
Cloud Attenuation	0	0.16 dB	
Scintillation	0	0.25 dB	
Total Attenuation	205.7	206.9 dB	

Downlink Propagation Model				
Frequency	11.88 GHz			
Availability	99.75%			
Satellite Longitude	255.0 °E			
Site Location	Var Seattle			
Site Latitude	46.6 °N			
Site Longitude	237.8 °E			
Site Altitude	0.0 km			
Antenna efficiency	60%			
Antenna diameter	0.4 m			
Polarization	н			
Slant Range	38293.1 km			
Elevation Angle	33.8 °			
Rain Height	2.5 km			
Rain Intensity @ 0.01%	40.0 mm/hr			
Total Columnar Content of Liquid @ 0.01	0.7 kg/m2			
Wet term of refraction coindex	35.0			
Temperature	279.0 K			
Water Vapor Content	5.2 g/m3			
Polarization Angle	74.4 °			
Tsys, clear sky	117.0 K			
Tsys, rain	173.9 K			

		Downli	
Return Link Parameters	Uplink	nk	
Site	Var -	Carlsb	
bite	Seattle	ad	
Frequency, GHz	14.18	11.88	
Availability	99.75%	99.75	
Antenna Size, m	0.37	% 4.50	
Modulation	GMSK		
Coding	Rate 1	/3 TC	
Data rate (kbps)	12	8	
Signal rate (kbaud/s)	384	.0	
Transponder Bandwidth (kHz)	240	60	
Uplink C/No budget	Clear Sky	Raiı	n U/L
Uplink EIRP (incl. UPC compensation)	35.71	35.71	dBW
Terminal Pointing Loss	0.07	0.0	7 dB
Path Loss	207.27	209	.2 dB
Spacecraft G/T	2	2 d	IB/K
Boltzmann's constant	228.6	228.6 d	BW/K/Hz
Uplink C/No Transponder input	58.98	57.06	i dBHz
Carrier Suppression	1.75	1.7	5 dB
Noise Suppression	1.74	1.7	4 dB
Uplink C/No Transponder output	58.97	57.05	dBHz

			Rain U/ L	Rain U/L	Clear Sky U/L
EndtoEnd Link Budget	С	lear Sky	Rain D/ L	Clear Sky D/L	Rain D/L
Uplink C/No		58.97	57.05	57.05	58.97 dBHz
Uplink C/Io		62.26	60.34	60.34	62.26 dBHz
Downlink C/No		71.90	67.77	69.98	69.69 dBHz
Downlink C/Io	55.9662923	62.19	60.27	60.27	62.19 dBHz
Multiple Access Interference	33.3002323	64.27	62.35	62.35	64.27 dBHz
Total C/(No+Io)		55.37	53.38	53.45	55.30 dBHz
Required C/(No+Io)		53.32	53.32	53.32	53.32 dBHz
Margin		2.0	0.1	0.1	2.0 dE
			Rain U/ L	Rain U/L	Clear Sky U/L
Downlink C/No budget	с	lear Sky	Rain D/ L	Clear Sky D/L	Rain D/L
Downlink EIRP		16.27	14.4	14.4	16.3 dBW
Path Loss		205.41	206.2	205.4	206.2 dB

	Downlink EIRP	16.27	14.4	14.4	16.3 dBW
	Path Loss	205.41	206.2	205.4	206.2 dB
	Hub Clearsky G/T	32.44	32.4	32.4	32.4 dB/K
	Rain Noise Temperature Increase	0.00	1.4	0.0	1.4 dB
	Boltzmann's constant	228.60	228.6	228.6	228.6 dBW/K/Hz
	Downlink C/No	71.9	67.8	70.0	69.7 dBHz
-					

Uplink C/Io terms	Clear Sky	Rain U/L
ASI	65.0	63.0 dBHz
CrossPol	65.6	63.7 dBHz
Uplink HPA IM	100	100 dBHz
Uplink C/Io Transponder input	62.3	60.4 dBHz
Carrier Suppression	1.75	1.75 dB
Noise Suppression	1.74	1.74 dB
Uplink C/Io Transponder output	62.3	60.3 dBHz

		Rain U/ L	Rain U/L Clear Sky	
Downlink C/Io terms	Clear Sky	Rain D/ L	Clear Sky D/L	Rain D/L
ASI	78.77	76.85	76.85	78.77 dBHz
CrossPol	73.44	71.52	71.52	73.44 dBHz
Transponder IM	63.51	61.59	61.59	63.51 dBHz
PCMA C/lo	70.01	68.09	68.09	70.01 dBHz

Uplink Path Loss	Clear Sky	Rain U/L
Freespace Path Loss	207.14	207.1 dB
Gaseous Attenuation	0.13	0.13 dB
Rain Attenuation	0	1.7 dB
Cloud Attenuation	0	0.22 dB
Scintillation	0	0.27 dB
Total Attenuation	207.3	209.2 dB

Uplink Propagation Model	
Frequency	14.18 GHz
Availability	99.75%
Satellite Longitude	255.0 °E
Site Location	Var Seattle
Site Latitude	46.6 °N
Site Longitude	237.8 °E
Site Altitude	0.0 km
Antenna efficiency	68%
Antenna diameter	0.4 m
Polarization	V
Slant Range	38293.1 km
Elevation Angle	33.8 °
Rain Height	2.5 km
Rain Intensity @ 0.01%	40.0 mm/hr
Total Columnar Content of Liquid @ 0. 01	0.7 kg/m2
Wet term of refraction coindex	35.0
Temperature	279.0 K
Water Vapor Content	5.2 g/m3
Polarization Angle	15.6 °

Downlink Path Loss	Clear Sky	Rain
Freespace Path Loss	205.3	205.3 dB
Gaseous Attenuation	0.08	0.08 dB
Rain Attenuation	0	0.7 dB
Cloud Attenuation	0	0.11 dB
Scintillation	0	0.15 dB
Total Attenuation	205.41	206.2 dB

Downlink Propagation Model	
Frequency	11.88 GHz
Availability	99.75%
Satellite Longitude	255.0 °E
Site Location	Carlsbad
Site Latitude	33.2 °N
Site Longitude	242.7 °E
Site Altitude	0.0 km
Antenna efficiency	66%
Antenna diameter	4.5 m
Polarization	н
Slant Range	37141.4 km
Elevation Angle	49.2 °
Rain Height	3.2 km
Rain Intensity @ 0.01%	25.1 mm/hr
Total Columnar Content of Liquid @ 0.01	0.6 kg/m2
Wet term of refraction coindex	45.3
Temperature	289.6 K
Water Vapor Content	7.2 g/m3
Polarization Angle	71.9 °
Tsys, clear sky	105.1 K
Tsys, rain	144.6 K