ELVL-2019-0045649 Rev A July 13, 2020

> Orbital Debris Assessment for the PR-CuNaR2 CubeSat per NASA-STD 8719.14A

Signature Page

user Johnson, Analyst, a.i. solutions, AIS2

Scott Higginbotham, Mission Manager, NASA KSC VA-C

National Aeronautics and Space Administration

John F. Kennedy Space Center, Florida

Kennedy Space Center, FL 32899

ELVL-2019-0045649 Rev A

Reply to Attn of: VA-H1

July 13, 2020

ГО:	Scott Higginbotham,	LSP Mission Manager,	NASA/KSC/VA-C

- FROM: Yusef Johnson, a.i. solutions/KSC/AIS2
- SUBJECT: Orbital Debris Assessment Report (ODAR) for the PR-CuNaR2

REFERENCES:

- A. NASA Procedural Requirements for Limiting Orbital Debris Generation, NPR 8715.6B, 6 February 2017
- B. Process for Limiting Orbital Debris, NASA-STD-8719.14B, 4 25 2019
- C. International Space Station Reference Trajectory, delivered May 2019
- D. McKissock, Barbara, Patricia Loyselle, and Elisa Vogel. *Guidelines on Lithiumion Battery Use in Space Applications*. Tech. no. RP-08-75. NASA Glenn Research Center Cleveland, Ohio
- E. *UL Standard for Safety for Lithium Batteries, UL 1642.* UL Standard. 5th ed. Northbrook, IL, Underwriters Laboratories,2012
- F. Kwas, Robert. Thermal Analysis of ELaNa-4 CubeSat Batteries, ELVL-2012-0043254; Nov 2012
- G. Range Safety User Requirements Manual Volume 3- Launch Vehicles, Payloads, and Ground Support Systems Requirements, AFSCM 91-710 V3.
- H. HQ OSMA Policy Memo/Email to 8719.14: CubeSat Battery Non-Passivation, Suzanne Aleman to Justin Treptow, 10, March 2014
- I. ODPO Guidance Email: Fasteners and Screws, John Opiela to Yusef Johnson, 12 February 2020

The intent of this report is to satisfy the orbital debris requirements listed in ref. (a) for the PR-CuNaR2 Cubesat, which will be part of the ELaNa-36 complement, launching on the SpaceX-22 vehicle. It serves as the final submittal in support of the spacecraft Safety and Mission Success Review (SMSR). Sections 1 through 8 of ref. (b) are addressed in this document; sections 9 through 14 fall under the requirements levied on the primary mission and are not presented here. This CubeSat will passively reenter, and therefore this ODAR will also serve as the End of Mission Plan (EOMP) for this CubeSat.

RECORD OF REVISIONS							
REV	DESCRIPTION	DATE					
0	Original submission	November 2019					
А	Mass property/component updates, launch date/vehicle updates	July 2020					

Section 1: Program Management and Mission Overview

The PR-CuNaR2 CubeSat is sponsored by the Human Exploration and Operations Mission Directorate at NASA Headquarters. The Program Executive is John Guidi. Responsible program/project manager and senior scientific and management personnel are as follows:

PR-CuNaR2: Dr. Amilcar Rincon-Charris, Inter American University of Puerto Rico – Bayamon Campus

The following table summarizes the compliance status of the PR-CuNaR2 CubeSat to be flown on the SpaceX-22 launch vehicle and deployed from the International Space Station. PR-CuNaR2 is fully compliant with all applicable requirements.

Requirement	Compliance Assessment	Comments
4.3-1a	Not applicable	No planned debris release
4.3-1b	Not applicable	No planned debris release
4.3-2	Not applicable	No planned debris release
4.4-1	Compliant	On board energy source
		(batteries) incapable of
		debris-producing failure
4.4-2	Compliant	On board energy source
		(batteries) incapable of
		debris-producing failure
4.4-3	Not applicable	No planned breakups
4.4-4	Not applicable	No planned breakups
4.5-1	Compliant	
4.5-2	Not applicable	
4.6-1(a)	Compliant	Worst case lifetime 0.695
		yr (~9 months)
4.6-1(b)	Not applicable	
4.6-1(c)	Not applicable	
4.6-2	Not applicable	
4.6-3	Not applicable	
4.6-4	Not applicable	Passive disposal
4.6-5	Compliant	
4.7-1	Compliant	Non-credible risk of
		human casualty
4.8-1	Compliant	No planned tether releases

Table 1: Orbital Debris Requirement Compliance Matrix

Program Milestone Schedule

Task	Date
CubeSat Selection	January 2018
Delivery to Nanoracks	December 4 th , 2020
Launch	March 12 th , 2021

Figure 1: Program Milestone Schedule

PR-CuNaR2 will be launched as a payload on the SpaceX Falcon 9 launch vehicle executing the SpX-22 mission. The current launch date is projected to be March 12th, 2021.

Section 2: Spacecraft Description

Table 2 outlines the generic attributes of the spacecraft.

Table 2: PR-CuNaR2 Attributes

CubeSat Name	CubeSat Quantity	CubeSat size (mm ³)	CubeSat Mass (kg)
PR-CuNaR2	1	333.5 x 107.3 107.3	2.66

The following pages describe PR-CuNaR2.

PR-CuNaR2– Inter American University of Puerto Rico, Bayamon Campus – 3U

Figure 2: PR-CuNaR2 Exploded View

Overview

The PR-CuNaR2 (Puerto Rico CubeSat NanoRocks-2) is a 3U CubeSat scientific investigation by the Inter American University of Puerto Rico, Bayamon, to increase understanding of the outcomes of relevant collisions among millimeter-sized particles, or "pebbles", in a protoplanetary disk. The experiment will take advantage of the long duration and high quality of microgravity provided by a CubeSat in Low-Earth-Orbit (LEO) to obtain a large sample of collisional outcomes at very low velocities (<10 cm/s). The experiment consists of nine chambers containing different populations of particles that are mechanically shaken to induce collisions between the particles. Video of the collisions will indicate the collision parameters (mass, density and composition of particles, and collision velocities) that lead to sticking, rebound, and fragmentation of aggregates. In the case of rebounds, the coefficient of restitution (a measure of the dissipation of energy) will be measured.

CONOPS

Upon deployment from the dispenser, PR-CuNaR2 starts counting down a 30 minutes timer and then will power up the Motherboard. Next, the passive control system begins to actuate. After stabilizing the CubeSat, the vibrating motor is turned on for 15 seconds then stops. After 45 seconds of pausing the motor, the particles will continue to move and then the camera board and the backlights will activate to record the collisions. The program of the camera is executed for 5 minutes and then proceeds to store the video and processes it to be sent by radio. The CubeSat then enters charging mode. After the launch, the radio will be powered on in receive mode only. As the satellite flies over a ground station, the station will continuously beacon towards the satellite. When the satellite radio hears the beacon, along with the proper serial number code, it will respond, and a link will be established. At that point, the ground station will ask the satellite for information, typically payload data or onboard telemetry. The satellite will respond by

downlinking the requested information. When the link is lost due to the satellite passing out of view and the satellite was transmitting, the satellite will try up to 3 seconds to complete the last packet transmitted. The satellite will then revert to a passive receive mode and wait for the next beacon from a ground station.

Materials

Much of this satellite is composed of 6061-O, 6061-T4, 6061-T6 aluminum, Delrin and PCB materials. There is glass in the payload, and it is made from quartz. The radio uses a ceramic patch antenna.

Hazards

There are no pressure vessels, hazardous or exotic materials.

Batteries

The electrical power storage system consists of common lithium-ion batteries (provided by EnduroSat) with over-charge/current protection circuitry. The batteries will undergo flight acceptance testing in accordance with the procedures described in Nanoracks document NR-SRD-139 Rev C "Flight Acceptance Test Requirements for Lithium-ion Cells and Battery Packs".

Section 3: Assessment of Spacecraft Debris Released during Normal Operations

The assessment of spacecraft debris requires the identification of any object (>1 mm) expected to be released from the spacecraft any time after launch, including object dimensions, mass, and material.

The section 3 requires rationale/necessity for release of each object, time of release of each object, relative to launch time, release velocity of each object with respect to spacecraft, expected orbital parameters (apogee, perigee, and inclination) of each object after release, calculated orbital lifetime of each object, including time spent in Low Earth Orbit (LEO), and an assessment of spacecraft compliance with Requirements 4.3-1 and 4.3-2.

No releases are planned for PR-CuNaR2, therefore this section is not applicable.

Section 4: Assessment of Spacecraft Intentional Breakups and Potential for Explosions.

There are NO plans for designed spacecraft breakups, explosions, or intentional collisions for PR-CuNaR2.

The probability of battery explosion is very low, and, due to the very small mass of the satellites and their short orbital lifetimes the effect of an explosion on the far-term LEO environment is negligible (ref (h)).

The CubeSats batteries still meet Req. 56450 (4.4-2) by virtue of the HQ OSMA policy regarding CubeSat battery disconnect stating;

"CubeSats as a satellite class need not disconnect their batteries if flown in LEO with orbital lifetimes less than 25 years." (ref. (h))

Limitations in space and mass prevent the inclusion of the necessary resources to disconnect the battery or the solar arrays at EOM. However, the low charges and small battery cells on the CubeSat's power system prevent a catastrophic failure, so that passivation at EOM is not necessary to prevent an explosion or deflagration large enough to release orbital debris.

Assessment of spacecraft compliance with Requirements 4.4-1 through 4.4-4 shows that with a maximum CubeSat lifetime of 0.695 years (~9 months) maximum, PR-CuNaR2 is compliant.

Section 5: Assessment of Spacecraft Potential for On-Orbit Collisions

Calculation of spacecraft probability of collision with space objects larger than 10 cm in diameter during the orbital lifetime of the spacecraft takes into account both the mean cross sectional area and orbital lifetime.

Figure 4: PR-CuNar2 Expanded View

 $Mean CSA = \frac{\sum Surface Area}{4} = \frac{[2 * (w * l) + 4 * (w * h)]}{4}$ Equation 1: Mean Cross Sectional Area for Convex Objects

$$Mean \ CSA = \frac{(A_{max} + A_1 + A_1)}{2}$$

Equation 2: Mean Cross Sectional Area for Complex Objects

The CubeSat evaluated for this ODAR are stowed in a convex configuration, indicating there are no elements of the CubeSat obscuring another element of the same CubeSat from view. Thus, the mean CSA for the stowed CubeSat was calculated using Equation 1.

PR-CuNaR2 orbit at deployment has a 422 km apogee with a 412 km perigee. With an area to mass ratio of ~0.01106 m²/kg, DAS yields 0.695 years (~9 months) for orbit lifetime for its as deployed state, which in turn is used to obtain the collision probability. PR-CuNar2 is calculated to have a probability of collision of 0.0. Table 3 below provides complete results.

There will be no post-mission disposal operation. As such the identification of all systems and components required to accomplish post-mission disposal operation, including passivation and maneuvering, is not applicable.

CubeSat	PR-CuNar2
Mass (kg)	2.66

ed	Mean C/S Area (m^2)	0.0294		
loy	Area-to Mass (m^2/kg)	0.01106		
dep	Orbital Lifetime (yrs)	0.695		
As	Probability of collision (10 ^x)	0.0000		

Solar Flux Table Dated 3/27/2020

 Table 3: CubeSat Orbital Lifetime & Collision Probability

The probability of PR-CuNaR2 having a collision with debris and meteoroids greater than 10 cm in diameter and capable of preventing post-mission disposal is less than 0.00000, for any configuration. This satisfies the 0.001 maximum probability requirement 4.5-1.

PR-CuNaR2 has no capability nor has plans for end-of-mission disposal, therefore requirement 4.5-2 is not applicable.

Assessment of spacecraft compliance with Requirements 4.5-1 shows PR-CuNaR2 to be compliant.

PR-CuNaR2 has no capability or plans for end-of-mission disposal, therefore Requirement 4.5-2 is not applicable. PR-CuNaR2 will passively reenter and therefore this ODAR also serves as the EOMP (End of Mission Plan)

Section 6: Assessment of Spacecraft Postmission Disposal Plans and Procedures

PR-CUNAR2 will naturally decay from orbit within 25 years after end of the mission, satisfying requirement 4.6-1a detailing the spacecraft disposal option.

Planning for spacecraft maneuvers to accomplish post-mission disposal is not applicable. Disposal is achieved via passive atmospheric reentry.

The area-to-mass for PR-CuNaR2 is calculated for is as follows:

$$\frac{Mean C/SArea (m^2)}{Mass (kg)} = Area - to - Mass (\frac{m^2}{kg})$$

Equation 3: Area to Mass

$$\frac{0.0294 \ m^2}{2.659 \ kg} = \ 0.011 \frac{m^2}{kg}$$

The assessment of the spacecraft illustrates they are compliant with Requirements 4.6-1 through 4.6-5.

DAS Orbital Lifetime Calculations:

DAS inputs are: 422 km maximum apogee 412 km maximum perigee altitudes with an inclination of 51.6° at deployment no earlier than March 2021. An area to mass ratio of ~0.01106 m²/kg for the PR-CuNaR2 CubeSat was used. DAS yields a 0.695 years (~9 months) orbit lifetime for PR-CuNaR2 in its deployed state.

This meets requirement 4.6-1. For the complete list of CubeSat orbital lifetimes reference **Table 3: CubeSat Orbital Lifetime & Collision Probability**.

Assessment results show compliance.

Section 7: Assessment of Spacecraft Reentry Hazards

A detailed assessment of the components to be flown on PR-CuNaR2 was performed. The assessment used DAS, a conservative tool used by the NASA Orbital Debris Office to verify Requirement 4.7-1. The analysis is intended to provide a bounding analysis for characterizing the survivability of a CubeSat's component during re-entry. For example, when DAS shows a component surviving reentry, it is not taking into account the material ablating away or charring due to oxidative heating. Both physical effects are experienced upon reentry and will decrease the mass and size of the real-life components as the reenter the atmosphere, reducing the risk they pose still further.

The following steps are used to identify and evaluate a components potential reentry risk relative to the 4.7-1 requirement of having less than 15 J of kinetic energy and a 1:10,000 probability of a human casualty in the event the survive reentry.

- 1. Low melting temperature (less than 1000 °C) components are identified as materials that would never survive reentry and pose no risk to human casualty. This is confirmed through DAS analysis that showed materials with melting temperatures equal to or below that of copper (1080 °C) will always demise upon reentry for any size component up to the dimensions of a 1U CubeSat.
- 2. The remaining high temperature materials are shown to pose negligible risk to human casualty through a bounding DAS analysis of the highest temperature components, stainless steel (1500°C). If a component is of similar dimensions and has a melting temperature between 1000 °C and 1500°C, it can be expected to possess the same negligible risk as stainless steel components.
- 3. Fasteners and similar materials that are composed of stainless steel or a lower melting point material will not be input into DAS, as suggested by guidance from the Orbital Debris Project Office (Reference I)

Name	Material	Total Mass (kg)	Demise Alt (km)	Kinetic Energy (J)
Patch antenna	Ceramic, copper,aluminum and brass	.015	74.6	-
Damping rods	Stainless steel	.0145	74.9	-
DC motor	Stainless steel, copper	.044	0	5.62
Permanent magnet	AlNiCo	.011	0	0
Stabilization magnet	HyMu80	.026	0	2
Particles of Analysis: steel ball bearings	Chrome steel	.00082	78	-

Table 4: PR-CuNaR2 High Melting Temperature Material Analysis

The majority of high melting temperature components demise upon reentry and PR-CuNaR2 complies with the 1:10,000 probability of Human Casualty Requirement 4.7-1.

A breakdown of the determined probabilities follows:

Name	Status	Risk of Human Casualty						
PR-CuNaR2	PR-CuNaR2 Compliant 1:0							
*Requirement 4.7-1 Probability of Human Casualty > 1:10,000								

Table 5: Requirement 4.7-1 Compliance by CubeSat

If a component survives to the ground but has less than 15 Joules of kinetic energy, it is not included in the Debris Casualty Area that inputs into the Probability of Human Casualty calculation. This is why PR-CuNaR2 has a 1:0 probability, as none of its components have more than 15J of energy.

PR-CuNaR2 is shown to be compliant with Requirement 4.7-1 of NASA-STD-8719.14A.

Section 8: Assessment for Tether Missions

PR-CuNaR2 will not be deploying any tethers.

PR-CuNaR2 satisfies Section 8's requirement 4.8-1.

Section 9-14

ODAR sections 9 through 14 pertain to the launch vehicle, and are not covered here. Launch vehicle sections of the ODAR are the responsibility of the CRS provider.

If you have any questions, please contact the undersigned at 321-867-2098.

/original signed by/

Yusef A. Johnson Flight Design Analyst a.i. solutions/KSC/AIS2

cc: VA-H/Mr. Carney VA-H1/Mr. Beaver VA-H1/Mr. Haddox VA-C/Mr. Higginbotham VA-C/Mrs. Nufer AIS3/Mrs. Pariso SA-D2/Mr. Frattin SA-D2/Mr. Hale SA-D2/Mr. Henry Analex-3/Mr. Davis Analex-22/Ms. Ramos

Appendix Index:

Appendix A. PR-CuNaR2 Component List:

<u>No</u>	<u>Name</u>	<u>Oty</u>	<u>Material</u>	Body Type	<u>Mass</u> (g) (total)	<u>Diameter</u> / <u>Width</u>	<u>Length</u>	<u>Height</u>	<u>High</u> <u>Temp</u>	<u>Melting</u> <u>Temp</u> (F ^o)	<u>Survivability</u>
1	PR-CuNaR 2 - 3U		6061 aluminum	Box	2658.9 35	107.3 mm	333.5 mm	107.3 mm	No	-	Demise
2	3U Chassis	1	6061 aluminum	Box	550.4	100 mm	333.5 mm	100 mm	No	-	Demise
3	PCB solar array holder	4	Fiber glass	Sheet	179.6	82.3 mm	322.6 mm	1.37 mm	No	-	Demise
4	Solar Panels	12	Fiber glass	Plates	376.8	82.2 mm	88.7 mm	1.58 mm	No	-	Demise
5	Patch antenna	1	Ceramic, copper,aluminum and brass	Plates	15	50.8mm	50.8mm	6.35mm	Yes	-	Demise
6	Rails	3	6061 aluminum	Rectangular	119.70	12.5 mm	188.4 mm	12.5 mm	No	-	Demise
7	rails special corner	1	6061 aluminum	Rectangular	38.80	11 mm	188.4 mm	12.5 mm	No	-	Demise
8	Base v2	1	6061 aluminum	Box	67.10	87.7 mm	3 mm	87.7 mm	No	-	Demise
9	Arm	2	Delrin	Rectangular	6.74	6.8 mm	46 mm	18.8 mm	No	-	Demise
10	Plate 1	1	Aluminum Sheet	Sheets	32.10	87.9 mm	120 mm	1.6 mm	No	-	Demise
11	Plate 2	1	Aluminum Sheet	Sheets	32.10	87.9 mm	120 mm	1.6 mm	No	-	Demise
12	Plate 3	1	Aluminum Sheet	Sheets	32.10	87.9 mm	120 mm	1.6 mm	No	-	Demise
13	Camera mount (full block)	1	6061 aluminum	Box	18.40	45 mm	32.5 mm	45 mm	No	-	Demise
14	camera plate	1	6061 aluminum	Plate	29.10	87.7 mm	2 mm	87.7 mm	No	-	Demise
15	payload bottom	1	6061 aluminum	Box	87.00	65 mm	28 mm	65 mm	No	-	Demise
16	Clamp 1	2	6061 aluminum	L shape	28.00	7 mm	33.3 mm	65 mm	No	-	Demise
17	Clamp 2	2	6061 aluminum	L shape	25.80	7 mm	33.3 mm	69 mm	No	-	Demise
18	Glass	2	Quartz Glass	Plate	59.00	65 mm	3 mm	65 mm	No	-	Demise
19	Diffuser	1	PTFE	Sheet	5.30	65 mm	1 mm	65 mm	No	-	Demise
20	Divider	1	6061 aluminum	Rectangular	21.10	65 mm	4 mm	65 mm	No	-	Demise
21	Flat head 2.5 mm x10	36	Stainless Steel	Cylindrical	14.04	2.5 mm	10 mm	2.5 mm	Yes	2500°	Demise

Appendix A. PR-CuNaR2 Component List

22	Button head 3 mm x 6	12	Stainless Steel	Cylindrical	4.68	3 mm	6 mm	3 mm	Yes	2500°	Demise
23	flat head 4/40 x 1/4 in	4	Aluminum	Cylindrical	0.56	2.54 mm	6.35 mm	2.54 mm	No	-	Demise
24	press in nuts 2.5mm - 3mm	6	stainless steel	Cylindrical	1.80	2.5 mm	2 mm	2.5 mm	Yes	2500°	Demise
25	flat head 3mm x 20	2	stainless steel	Cylindrical	3.00	3 mm	20 mm	3 mm	Yes	2500°	Demise
26	flat head 3mm x 6	8	stainless steel	Cylindrical	3.12	3 mm	6 mm	3 mm	Yes	2500°	Demise
27	socket head 4/40 x 1" 3/8 in	2	stainless steel	Cylindrical	3.58	2.54 mm	34.9 mm	2.54 mm	Yes	2500°	Demise
28	nuts 2.5mm	28	stainless steel	Cylindrical	6.16	3 mm	2 mm	3 mm	Yes	2500°	Demise
29	4/40 nuts in	2	stainless steel	Cylindrical	0.44	3.2 mm	2 mm	3.2 mm	Yes	2500°	Demise
30	Timer Board	1	Ceramic, copper,aluminum and brass	Rectangular	88	96 mm	90mm	1.6mm	No		Demise
31	ADCS Board	1	Ceramic, copper,aluminum and brass	Rectangular	90	96 mm	90mm	1.6mm	No	-	Demise
32	Comm Board	1	Ceramic, copper,aluminum and brass	Rectangular	85	96 mm	90mm	1.6mm	No		Demise
33	Micro Computer - Raspberry Pi	1	Ceramic, copper,aluminum and brass	Box	50	83 mm	59mm	18mm	No		Demise
34	Webcam	1	Ceramic, copper,aluminum and brass	Box	36	29 mm	29mm	30mm	No		Demise
35	LEDs Board	1	Ceramic, copper,aluminum and brass	Rectangular	5	24 mm	24mm	1.6mm	No		Demise
36	EPS & Battery	1	Ceramic, copper,aluminum and brass	Box	350	90 mm	95.9mm	30mm	No		Demise
37	Damping Rods	4	stainless steel	Cylindrical	14.48	4.6mm to 4.0mm denture (center of the rod concaves)	4.6mm to 4.0mm denture	30.04m m	Yes	2500°	Demise
38	DC Motor	1	stainless steel and copper	Box	44	4.8 mm	33.00 mm	23.00 mm	Yes	2500°	0 km
39	DC Motor Case	1	6061 Aluminum	Box	15.36	30 mm	42 mm	14 mm	No	-	Demise

40	Driver Board	1	Ceramic, copper, aluminum and brass	Rectangular	70	96 mm	90mm	1.6mm	Yes	-	Demise
41	Permanent Magnet	1	Alnico5	Cylindrical	11	6.4 mm	35.6mm	N/A	Yes	2651°	0 km
42	Stabilization Magnet	2	HyMu 80 (Hysteresis Material)	Rectangular	26	1.588mm	70mm	N/A	Yes	2500°	0 km
43	Kapton Tape	1	Silicone Adhesive	Rectangular	8.32	100 mm	100 mm	340 mm	No	-	Demise
44	Solar Wires	50% of usage	Polyethylene (PE)	Cylindrical	0.045	0.991mm	609.6mm	0.991m m	No	-	Demise
45	USB Wires	25% of usage	Polyethylene (PE)	Cylindrical	0.022	0.991mm	304.8mm	0.991m m	No	-	Demise
46	Antenna Wires	6.25% of usage	Polyethylene (PE)	Cylindrical	0.005	0.991mm	76.2mm	0.991m m	No	-	Demise
47	LED Light Wires	6.25% of usage	Polyethylene (PE)	Cylindrical	0.005	0.991mm	76.2mm	0.991m m	No	-	Demise
48	Motor Wires	6.25% of usage	Polyethylene (PE)	Cylindrical	0.005	0.991mm	76.2mm	0.991m m	Yes	-	0 km
49	3M 2226 Epoxy	6.25% of usage	Polyethylene (PE)	Cylindrical	0.005	0.991mm	76.2mm	0.991m m	Yes	-	0 km
50	LocTite 242	1	6061 Aluminum	N/A	0	N/A	N/A	N/A	No	-	
51	Radiation Protection Paint for Boards (HumiSeal 1A33)	1	HumiSeal 1A33	N/A	0	N/A	N/A	N/A	No	-	
52	Particles of Analysis: Ball Bearings	20	Chrome Steel	Spherical	0.082	1mm	-	-	Yes	2500°	Demise
53	Particles of Analysis: Ball Bearings	20	Glass	Spherical	0.026	1mm	-	-	No	-	
54	Particles of Analysis: Ball Bearings	20	Acrylic	Spherical	0.012	1mm	-	-	No	-	
55	Standoff (Board Holders/Spacers)	18	6061 Aluminum	Cylindrical	0.848	5mm	N/A	16mm	No	-	
56	Coin Cell	1	Lithium	Cylindrical	3.2	20.32mm	N/A	2.3mm	No	-	