Harris Corporation

UAS C Band Radio

Attachment to FCC Experimental License

James Ziarno Commercial UAS Solutions, Director of Technology ELECTRONIC SYSTEMS / HARRIS CORPORATION Office: +1-321-309-6130 / Mobile: +1-321-604-9822 harris.com / jziarno@harris.com 1025 W NASA Blvd / Melbourne, FL 32919 / USA

1. Overview

Harris Corporation is requesting an FCC Experimental License within the allocated UAS C Band (5030 – 5091 MHz) to perform testing and validation of our Command & Non-Payload Communications (CNPC) Radio System. We will install a Mobile CNPC Radio in an Unmanned Air Vehicle (UAV) and communicate to the UAV via a Fixed CNPC Base Station Mobile Station. Our experimental UAS operations will be conducted within 17km (10 miles) of the Harris Corporation Manufacturing facility located in Malabar, FL. The UAV will be operated below 400' Above Ground Level (AGL) and In Accordance With (IAW) all applicable FAA rules

2. Harris Command & Non-Payload Communications (CNPC) Radio System

Harris Corporation is participating in several key FAA UAS initiatives, including FAA Pathfinder, FAA UAS test site projects, the RTCA Drone Advisory Committee and RTCA SC-228. We have also been an active participant in RTCA SC-228 "Minimum Performance Standards for Unmanned Aircraft Systems" and the follow-on Phase 1 Terrestrial-based CNPC Link (Command & Non-Payload Communications) committee

Based on this experience, Harris is developing initial UAS CNPC Radio and Beyond Visual Line of Sight (BVLOS) network capabilities which are at various levels of maturity given current state of the UAS standards such as RTCA DO-362 and the more recently published FAA Technical Standard Order (TSO) C213.

Our CNPC Radio systems are now at a point in development that we are ready to perform controlled RF radiation testing to verify the integrity and performance of the radio. Following the receipt of approval from the FAA we are hereby requesting an Experimental License from the FCC to further continue our testing.

3. Test Site Area (Malabar, FL)

The planned Test Site is centered on Harris Corporation's Manufacturing facility located at 2800 Jordan Blvd. Malabar, FL. This is a remote area rural area with a small General Aviation Airport (Valkaria) located about 1 1/2 miles from the Harris facility. We will closely coordinate our flight tests with Valkaria Airport Manager (Steve Borowski).

Test Site Area of Operation

4. C Band Spectrum for Unmanned Air Systems (UAS)

The FAA has designated C Band Spectrum (5030 – 5091 MHz) for use by UAS. Additionally, the FAA Spectrum Office has recommended the band be divided into 41 channels, which are allocated based on the Data Class of operation and required bandwidth.

This Experimental License application request is for a "Low, Medium and High-end" 85 kHz channel (3 Total) to support initial testing of the Harris Command and NonPayload Communication (CNPC) radio designed to support UAS Operations. Our request is to allow Manufacturing Testing of the Harris CNPC Radio for channels 3, 23 and 39 for both D1 and D2 as shown in the table below:

85 KHz Bandwidth Channels							
Channel	D1 (MHz)	D2 (MHz)					
3	5041.3125	5041.3975					
23	5045.6125	5045.6975					
39	5049.0525	5049.1375					

5. Coordination with FAA

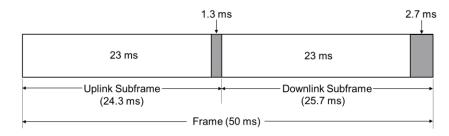
The requested C Band allocation is within the FAA Aviation Protected Spectrum and therefore requires pre-coordination and approval from the FAA prior to applying for an Experimental License from the FCC. Correspondingly, we have been closely coordinating with the FAA Spectrum Engineering Office and the use of these (12) channels have been determined to be acceptable to the FAA.

For additional information please contact: FAA Spectrum Office Don Nellis Donald.Nellis@faa.gov (202)267.9779

Our Frequency Coordination Requests have been engineered by the FAA Spectrum Engineering Office resulting in the following (12) FAA approvals:

Chan	D1/D2	Freq	TRK #	NG #	Details
3	D1	5041.31	183072	80550	Frequency Range: 5041.27000000 to 5041.35400000 MHz, Power: 10.000000 W, Mean Peak: Peak, Tolerance: 0.01000000, Station Class: Fixed
3	D1	5041.31	183071	80549	Frequency Range: 5041.27000000 to 5041.35400000 MHz, Power: 1.000000 W, Mean Peak: Peak, Tolerance: 0.01000000, Station Class: Mobile
3	D2	5041.39	183076	80554	Frequency Range: 5041.35400000 to 5041.44250000 MHz, Power: 10.000000 W, Mean Peak: Peak, Tolerance: 0.01000000, Station Class: Fixed
3	D2	5041.39	183075	80553	Frequency Range: 5041.35400000 to 5041.44250000 MHz, Power: 1.000000 W, Mean Peak: Peak, Tolerance: 0.01000000, Station Class: Mobile
23	D1	5045.61	183078	80556	Frequency Range: 5045.57000000 to 5045.65400000 MHz, Power: 10.000000 W, Mean Peak: Peak, Tolerance: 0.01000000, Station Class: Fixed
23	D1	5045.61	183077	80555	Frequency Range: 5045.57000000 to 5045.65400000 MHz, Power: 1.000000 W, Mean Peak: Peak, Tolerance: 0.01000000, Station Class: Mobile
23	D2	5041.69	183081	80558	Frequency Range: 5045.65400000 to 5045.74250000 MHz, Power: 10.000000 W, Mean Peak: Peak, Tolerance: 0.01000000, Station Class: Fixed
23	D2	5041.69	183080	80557	Frequency Range: 5045.65400000 to 5045.74250000 MHz, Power: 1.000000 W, Mean Peak: Peak, Tolerance: 0.01000000, Station Class: Mobile
39	D1	5049.05	183083	80560	Frequency Range: 5049.01000000 to 5049.09400000 MHz, Power: 10.000000 W, Mean Peak: Peak, Tolerance: 0.01000000, Station Class: Fixed
39	D1	5049.05	183082	80559	Frequency Range: 5049.01000000 to 5049.09400000 MHz, Power: 1.000000 W, Mean Peak: Peak, Tolerance: 0.01000000, Station Class: Mobile
39	D2	5049.14	183087	80564	Frequency Range: 5049.09400000 to 5049.18250000 MHz, Power: 10.000000 W, Mean Peak: Peak, Tolerance: 0.01000000, Station Class: Fixed
39	D2	5049.14	183086	80563	Frequency Range: 5049.09400000 to 5049.18250000 MHz, Power: 1.000000 W, Mean Peak: Peak, Tolerance: 0.01000000, Station Class: Mobile
				<u>S</u>	mmany of (12) EAA C Band LIAS Channel Approvals

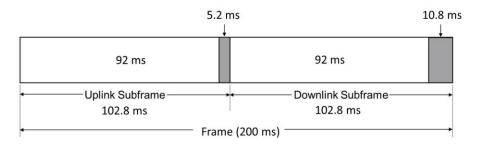
Summary of (12) FAA C Band UAS Channel Approvals


6. Modulating Signal Description

Both the fixed (Ground Base Station) and mobile (Unmanned Air Vehicle) transmitters use a GMSK (Gaussian Minimum Shift Keying) modulation scheme. Binary ones and zeroes are generated with a modulation index of 0.5 and a Bandwidth-Time (BT) product of 0.2.

6.1. RTCA TDD Format

RTCA DO-362 compliant Time Division Duplex (TDD) structure of 50 millisecond frames with 23 millisecond uplink and downlink sub-frames.


RTCA DO-362 Section 2.2.1.3 TDD Frame Structure Is shown below.

DO-362 TDD Frame Structure

6.2. Harris CNPC TDD Format

The Harris C Band CNPC Radio utilizes a very similar TDD subframe structure although currently with a 200 ms frame as shown below.

Harris CNPC TDD Frame Structure

<u>Note</u>: As part of our continuing development, Harris plans to modify our TDD structure to be fully compliant with the TDD (50 ms) frame structure specified in RTCA DO-362 Section 2.2.1.3.

7. UAS Requested Experimental License Channels

The FAA Spectrum Office has designated (41) channels at (5) different bandwidths (45 kHz, 85 kHz, 130 kHz, 170 kHz and 205 kHz). Harris is requesting Experimental Licenses at 85 kHz at the Low, Medium and High-end of the UAS C Band designated as channels 3, 23 and 39 as shown in the figure and chart below:

2						1			←5048.010				
3						23					39		
5041.3775				5045.6775			5049.1175						
5041.355	-			5045.655		5049.095							
5041.335		5041.4	425		5045.635		5045	.7425	5049.075		5049	1825	
▲ 5041.3125	5041.397	75		5045.6	5125	504	5.6975		5049.0	0525	504	9.1375	
5041.2980 5041.3540	50	041.4120	5041.4625	5045.5980	5045.	6540	5045.7120	5045.7625	5048.0380	5048.	.0940	5049.1520	5049.202

UAS C Band (85 kHz) Channels 3, 23, 39

	205 kHz	170 kHz	130kHz		85 kHz			45 kHz	
СН 1	A 5040.9475	B 5040.925	C 5040.905	D1 5040.8825	D2 5040.9675	D8	E1 5040.8680		E3 E4 0.9820 5041.0325
2	5041.1625	5041.140	5041.120	5041.0975	5041.1825	5041.2275	5041.0830		1.1970 5041.2475
3	5041.3775	5041.355	5041.335	5041.3125	5041.3975	5041.4425	5041.2980		1.4120 5041.4625
4	5041.5925	504+ -	5041/550	5041.5275	5041.6125	5041.6575	5041.5130	5041.5690 5041	1.6270 5041.6775
5	5041 CX	annel 3	041.765	5041.7425	5041.8275	5041.8725	5041.7280	5041.7840 5041	1.8420 5041.8925
6	5042.6	D1 & D2	5041.980	5041.9575	5042.0425	5042.0875	5041.9430	5041.9990 5042	2.0570 5042.1075
7	5042.2375	5042.215	5042.195	5042.1725	5042.2575	5042.3025	5042.1580	5042.2140 5042	2.2720 5042.3225
8	5042,4525	5042.430	5042.410	5042.3875	5042.4725	5042.5175	5042.3730	5042.4290 5042	2.4870 5042.5375
9	5042.6675	5042.645	5042.625	5042.6025	5042.6875	5042.7325	5042.5880	5042.6440 5042	2.7020 5042.7525
10	5042.8825	5042.860	5042.840	5042.8175	5042.9025	5042.9475	5042.8080	5042.8590 5042	2.9170 5042.9675
11	5043.0975	5043.075	5043.055	5043.0325	5043.1175	5043.1625	5043.0180	5043.0740 5043	3.1320 5043.1825
12	5043.3125	5043.290	5043.270	5043.2475	5048.3825	5043.3775	5043.2330	5043.2890 5043	3.3470 5043.3975
13	5043.5275	5043.505	5043.485	5043.4625	5043.5475	5043.5925	5043.4480	5043.5040 5043	3.5620 5043.6125
14	5043.7425	5043.720	5043.700	5043.6775	5043.7625	5043.8075	5043.6630	5043.7190 5043	3.7770 5043.8275
15	5043.9575	5043.935	5043.915	5043.8925	5043.9775	5044.0225	5043.8780	5043.9540 5043	3.9920 5044.0425
16	5044.1725	5044.150	5044.130	5044.1075	5044.1925	5044.2375	5044.0980	5044.1490 5044	4,2070 5044.2575
17	5044.3875	5044.365	5044.345	5044.3225	5044.4075	5044.4525	5044.3080	5044.3640 5044	1.4220 5044.4725
18	5044.6025	5044.580	5044.560	5044.5375	5044.6225	5044.6675	5044.5230	5044.5790 5044	1.6370 5044.6875
19	5044.8175	5044.795	5044.775	5044.7525	5044.8875	5044.8825	5044.7380	5044.7940 5044	1.8520 5044.9025
20	5045.0325	5045.010	5044.990	5044.9675	5045.0525	5045.0975	5044.9530	5045.0090 5045	5.0570 5045.1175
21	5045.2475	5045.225	5045.205	5045.1825	5045.2675	5045,3125	5045.1680	5045.2240 5045	5.2820 5045.3325
22	5045.4625	5045.440	5045.420	5045.3975	5045.4825	5045.5275	5045.3880	5045.4390 5045	5.4970 5045.5475
23	5045.6775	5045.655	5045.685	5045.6125	5045.6975	5045.7425	5045.5980	5045.6540 5045	5.7120 5045.7625
24	5045.8925	504= - 23	5045,850	5045.8275	5045.9125	5045.9575	5045.8130	5045.8690 5045	5.9270 5045.9775
25	504 Ch	annel 23 D1 & D2	46.065	5046.0425	5046.1275	5046.1725	5046.0280	5046.0840 5046	5.1420 5045.1925
26	5046	DIAL	5046.280	5046.2575	5045.3425	5045.3875	5045.2430	5046.2990 5046	5.3570 5046.4075
27	5046.5375	5046.515	5046.495	5046.4725	5045.5575	5045,6025	5046.4580	5046.5140 5046	5.5720 5046.6225
28	5046.7525	5046.730	5046.710	5046.6875	5045.7725	5046.8175	5046.6730	5046.7290 5046	5.7870 5046.8375
29	5046.9675	5046.945	5046.925	5046.9025	5046.9875	5047.0825	5046.8880	5046.9440 5047	7.0020 5047.0525
30	5047.1825	5047.160	5047.140	5047.1175	5047.2025	5047.2475	5047.1080	5047.1590 5047	7.2170 5047.2675
31	5047.3975	5047.375	5047.355	5047.3325	5047.4175	5047.4625	5047.3180	5047.3740 5047	7.4320 5047.4825
32	5047.6125	5047.590	5047.570	5047.5475	5047.6825	5047.6775	5047.5330	5047.5890 5047	7.6470 5047.6975
33	5047.8275	5047.805	5047.785	5047.7625	5047.8475	5047.8925	5047.7480	5047.8040 5047	7.8620 5047.9125
34	5048.0425	5048.020	5048.000	5047.9775	5048.0625	5048.1075	5047.9630	5048.0190 5048	3.0770 5048.1275
35	5048.2575	5048.235	5048.215	5048.1925	5048.2775	5048.3225	5048.1780	5048.2340 5048	3.2920 5048.3425
36	5048.4725	5048.450	5048.430	5048.4075	5048.4925	5048.5375	5048.3950	5048.4490 5048	3.5070 5048.5575
37	5048.6875	5048.665	5048.645	5048.6225	5048.7075	5048.7525	5048.6080	5048.6640 5048	8.7220 5048.7725
38	Long the second	annel 39	048.860	5048.8375	5048.9225	5048.9675	5048.8230	5048.8790 5047	7.9370 5048.9875
39	504 L	01 & D2	049.075	5049.0525	5049.1375	5049.1825	5048.0380	5048.0940 5049	9.1520 5049.2025
40	5049.3325	5049.310	5049.290	5049.2675	5049.3525	5049.3975	5049.2530	5049.3090 5049	9.3670 5049.4175
41	5049.5475	5049.525	5049.505	5049,4825	5049.5675	5049.6125	5049,4680	5049.5240 5049	9.5820 5049.6325

8. FAA Approval - Aviation Protected Spectrum channels

Harris has received approval from the FAA for all (12) Aviation Protected Spectrum channels requested by Harris to support our Experimental License application with the FCC. The details of these approvals including FAA Tracking Numbers are described below:

For additional information please contact:

FAA Spectrum Office Don Nellis Donald.Nellis@faa.gov (202)267.9779

8.1. FAA Approvals UAS C Band Channel 3 – D1 Base Station and Mobile

TRK 183072 (NG T180550) Summary

Attribute	Record Parameter
Serial Number	NG T180550
Frequency	M5041.3125
City	MALABAR
State	FL
Transmitter Radius	9
Transmitter Latitude	275853.00N
Transmitter Longitude	0803320.00W
Antenna Height	0015
Receiver Latitude	275853.00N
Receiver Longitude	0803320.00W
Service Type	
Equipment Type	C,HAC HRS102721- 001
Antenna Type	DIPOLE
Flight Level	
Runway Number	

Channel 3 – D1 (Base Station)

TRK 183071 (NG T180549) Summary

Attribute	Record Parameter
Serial Number	NG T180549
Frequency	M5041.3125
City	MALABAR
State	FL
Transmitter Radius	9
Transmitter Latitude	275853.00N
Transmitter Longitude	0803320.00W
Antenna Height	0000
Receiver Latitude	275853.00N
Receiver Longitude	0803320.00W
Service Type	
Equipment Type	C,HAC HRS102721- 001
Antenna Type	DIPOLE
Flight Level	
Runway Number	

Channel 3 - D1 (Mobile)

8.2. FAA Approvals UAS C Band Channel 3 – D2 Base Station and Mobile

TRK 183076 (NG T180554) Summary

Attribute	Record Parameter
Serial Number	NG T180554
Frequency	M5041.3975
City	MALABAR
State	FL
Transmitter Radius	9
Transmitter Latitude	275853.00N
Transmitter Longitude	0803320.00W
Antenna Height	0015
Receiver Latitude	275853.00N
Receiver Longitude	0803320.00W
Service Type	
Equipment Type	C,HAC HRS102721- 001
Antenna Type	DIPOLE
Flight Level	
Runway Number	

TRK 183075 (NG T180553) Summary

Attribute	Record Parameter
Serial Number	NG T180553
Frequency	M5041.3975
City	MALABAR
State	FL
Transmitter Radius	9
Transmitter Latitude	275853.00N
Transmitter Longitude	0803320.00W
Antenna Height	0000
Receiver Latitude	275853.00N
Receiver Longitude	0803320.00W
Service Type	
Equipment Type	C,HAC HRS102721- 001
Antenna Type	DIPOLE
Flight Level	
Runway Number	

Channel 3 – D2 (Base Station)

Channel 3 - D2 (Mobile)

Record Parameter

NG T180555

M5045.6125 MALABAR

275853.00N

275853.00N

0803320.00W

0803320.00W

FL 9

0000

8.3. FAA Approvals UAS C Band Channel 23 – D1 Base Station and Mobile

TRK 183078 (NG T180556) Summary

TRK 183077 (NG T180555) Summary

Attribute	Record Parameter	Attribute
Serial Number	NG T180556	Serial Number
Frequency	M5045.6125	Frequency
City	MALABAR	City
State	FL	State
Transmitter Radius	9	Transmitter Radius
Transmitter Latitude	275853.00N	Transmitter Latitude
Transmitter Longitude	0803320.00W	Transmitter Longitude
Antenna Height	0015	Antenna Height
Receiver Latitude	275853.00N	Receiver Latitude
Receiver Longitude	0803320.00W	Receiver Longitude
Service Type		Service Type
Equipment Type	C,HAC HRS102721- 001	Equipment Type
Antenna Type	DIPOLE	Antenna Type
Flight Level		Flight Level
Runway Number		Runway Number

Equipment Type	C.HAC HRS102721- 001
Antenna Type	DIPOLE
light Level	
Runway Number	
Channel 23	3 – D1 (Mobile)

Channel 23 – D1 (Base)

Channel 23 – D1 (Mobile)

8.4. FAA Approvals UAS C Band Channel 23 – D2 Base Station and Mobile

TRK 183081 (NG T180558) Summary

TRK 183080 (NG T180557) Summary

Attribute	Record Parameter
Serial Number	NG T180558
Frequency	M5045.6975
City	MALABAR
State	FL
Transmitter Radius	9
Transmitter Latitude	275853.00N
Transmitter Longitude	0803320.00W
Antenna Height	0015
Receiver Latitude	275853.00N
Receiver Longitude	0803320.00W
Service Type	
Equipment Type	C,HAC HRS102721- 001
Antenna Type	DIPOLE
Flight Level	
Runway Number	

Attribute	Record Parameter
Serial Number	NG T180557
Frequency	M5045.6975
City	MALABAR
State	FL
Transmitter Radius	9
Transmitter Latitude	275853.00N
Transmitter Longitude	0803320.00W
Antenna Height	0000
Receiver Latitude	275853.00N
Receiver Longitude	0803320.00W
Service Type	
Equipment Type	C,HAC HRS102721- 001
Antenna Type	DIPOLE
Flight Level	
Runway Number	

Channel 23 - D2 (Base)

Channel 23 - D2 (Mobile)

8.5. FAA Approvals UAS C Band Channel 39 – D1 Base Station and Mobile

TRK 183083 (NG T180560) Summary

TRK 183082 (NG T180559) Summary

Attribute	Record Parameter		
Serial Number	NG T180560		
Frequency	M5049.0525		
City	MALABAR		
State	FL		
Transmitter Radius	9		
Transmitter Latitude	275853.00N		
Transmitter Longitude	0803320.00W		
Antenna Height	0015		
Receiver Latitude	275853.00N		
Receiver Longitude	0803320.00W		
Service Type			
Equipment Type	C,HAC HRS102721- 001		
Antenna Type	DIPOLE		
Flight Level			
Runway Number			

Attribute	Record Parameter	
Serial Number	NG T180559	
Frequency	M5049.0525	
City	MALABAR	
State	FL	
Transmitter Radius	9	
Transmitter Latitude	275853.00N	
Transmitter Longitude	0803320.00W	
Antenna Height	0000	
Receiver Latitude	275853.00N	
Receiver Longitude	0803320.00W	
Service Type		
Equipment Type	C,HAC HRS102721- 001	
Antenna Type	DIPOLE	
Flight Level	2	
Runway Number		

Channel 39 - D1 (Base)

Channel 39 - D1 (Mobile)

8.6. FAA Approvals UAS C Band Channel 39 – D2 Base Station and Mobile

Attribute	Record Parameter	Attribute	Record Parameter
Serial Number	NG T180564	Serial Number	NG T180563
Frequency	M5049.1375	Frequency	M5049.1375
City	MALABAR	City	MALABAR
State	FL	State	FL
Transmitter Radius	9	Transmitter Radius	9
Transmitter Latitude	275853.00N	Transmitter Latitude	275853.00N
Transmitter Longitude	0803320.00W	Transmitter Longitude	0803320.00W
Antenna Height	0015	Antenna Height	0000
Receiver Latitude	275853.00N	Receiver Latitude	275853.00N
Receiver Longitude	0803320.00W	Receiver Longitude	0803320.00W
Service Type		Service Type	
Equipment Type	C,HAC HRS102721- 001	Equipment Type	C,HAC HRS102721- 001
Antenna Type	DIPOLE	Antenna Type	DIPOLE
Flight Level		Flight Level	
Runway Number		Runway Number	

TRK 183087 (NG T180564) Summary

TRK 183086 (NG T180563) Summary


Channel 39 - D2 (Base)

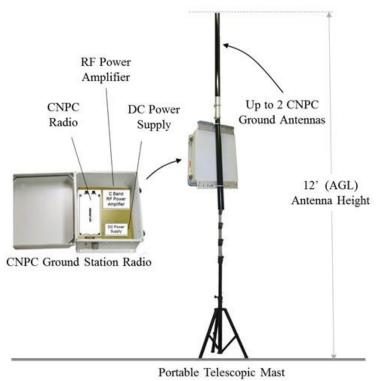
Channel 39 - D2 (Mobile)

9. Harris CNPC Airborne (Mobile) Radio

The Harris CNPC radio is a Software Defined Radio (SDR) that has been guided by the evolution of UAS Industry Standards and our participation in SC-228, RTCA MOPs and RTCA DO-362. Our CNPC Radio implementation incorporates quad core processors, the latest generation Field Programmable Gate Array (FPGA), and a state of the art programmable frequency agile transceiver. The radio is a Technology Readiness Level of 7 and sufficiently mature to support Experimental Tests and demonstrations.

The Harris CNPC radio supports the C-band spectrum approved by the FAA for UAS CNPC radio use. The radio has 2 RF SMA Connectors to support the option of 2 Spatial Diversity antennas, required to mitigate against multipath propagation losses, reducing Bit Error Rates, and improving overall link performance. The radio also includes a connector J1 main interface, providing DC Power Input, USB, Ethernet, RS-232, etc. and a J2 camera interface, providing video inputs.

Harris CNPC (Mobile) UAV Radio


A web-based Graphical User Interface (GUI) is used to configure the radio. The radio control screen allows the operator to configure both ends of the link. A health and status monitoring feature is available via the GUI as well.

10. Harris CNPC (Fixed) Base Radio System

The Harris ground radio system includes a Harris CNPC radio, RF power amplifier (RFPA), and DC power supply. The RFPA increases the RF Power to 10 watts (40 dBm), which fulfills the need to close the CNPC Link with sufficient margin (12dB), while capable of supporting a minimum data rate of 20 kbps throughout all phases of planned UAV flight.

For the Experimental License we plan on using a COTS omnidirectional C-band antenna with a gain of 1 dBi. The CNPC ground radio system will be housed in a NEMA enclosure and mounted on a portable telescopic antenna mast that extends a minimum of 12 feet Above Ground Level (AGL). Note: Depending on area ground clutter it may be necessary to increase the height of the C Band Antenna to maintain VLOS with the HALE UAV.

The Harris CNPC Base Station will be configured as shown in the figure below:

Harris CNPC Ground Station Equipment

11. Unmanned Air Vehicle (UAV) Mobile Antenna

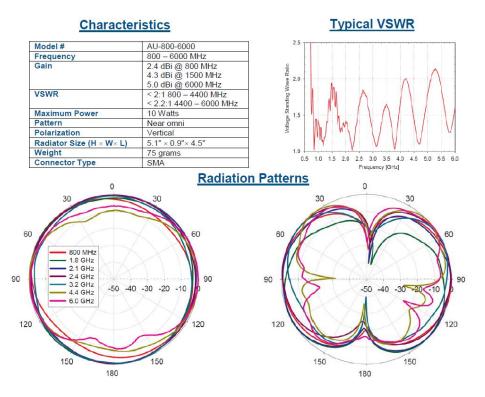
We will evaluate several small form factor blade antennas, that are certified for aircraft use that are vertically polarized, low gain (<3 dBi), omnidirectional, with elevation patterns that are near-hemispherical in coverage such as the Octane and Taoglas mini-UAV antennas shown below:

1. Octane <u>www.octanewireless.com</u> Model AU-800-6000 shown below:

Multiband Antenna for Mini UAVs

 Features and Benefits

 ○
 UHF Operation


 ○
 Small & Thin

 ○
 Aerodynamic

 ○
 Lightweight

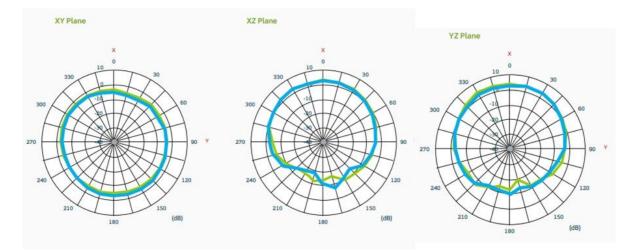
 ○
 Less than 75 grams!

Pharad's octane[®] Mini UAV antennas are the highest performing light weight antennas available for small UAV applications. Weighing only 75 grams, these antennas provide broadband operation from UHF through C-band. No other lightweight UAV antenna provides a single solution for such a variety of UAV communications equipment.

2. Taoglas WCM.10.005QQ111

.

.


- Right Hand Circularly Polarized
- IP67 Rating
- Dimensions: 30.7x34.9x17mm
- Cable: 50mm SS402 Coaxial Cable
- Connector: RP-SMA(M)

WCM.10.005QQ111

Part No: Description:

Stratus 5-5.8GHz 3dBi SMA(M) Connector Mount Antenna with Semi-Rigid Flexiform 402 Cable

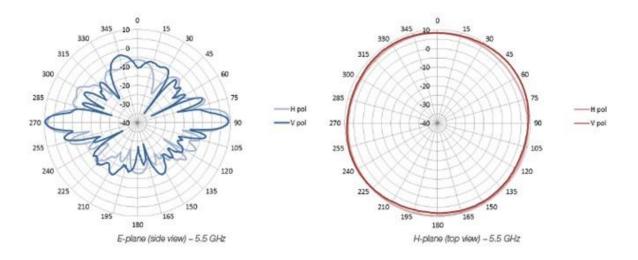
https://cdn.taoglas.com/datasheets/WCM.10.005QQ111.pdf

Typical UAV (Mobile Antenna)

12. CNPC (Fixed) Base Station Antenna

We will also evaluate several base station antennas, that are certified are vertically polarized, low gain (<3 dBi), omnidirectional, with elevation patterns that are near-hemispherical in coverage such as the Aruba and Southwest Antennas shown below:

12.1. Aruba Base Station Antenna


ANT-2x2-5010 is a kit of two omnidirectional antennas for use in 802.11n MIMO mesh link and client access applications. The kit contains

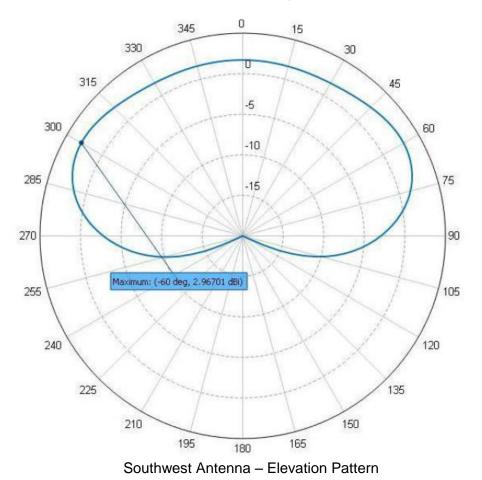
2 differently polarized antennas to be used as a 2x2 MIMO pair, and provides coverage in the 4.9 - 5.875 GHz frequency band.

FREQUENCY/MAX GAIN	DIMENSIONS
 4.9 – 5.875 GHz (10dBi) 	 490 x 25 x 25 (Vpol), 451 x 25 x 25 (Hpol)
POLARIZATION	WEIGHT
 Vpol antenna: linear, vertical 	 400 (Vpol), 180 (Hpol)
 Hpol antenna: linear, horizontal BEAMWIDTH 	HOUSING Radome: Polycarbonate, UV, White
 E-plane: 8 degrees (Vpol antenna), 9.5 degrees (Hpol antenna) H-plane: 360 degrees 	Addone: Polycarbonate, 0V, White CONNECTOR N-type male (Note: RF cables not included)
IMPEDANCE • 50 ohms	OPERATING / STORAGE TEMP. • -30C to +70C (operating), -40C to +85C (storage)
MAXIMUM INPUT POWER + 10 watts	MOUNTING STYLE
VSWR (MINIMUM PERFORMANCE) * 2.0:1	INSTALLATION HARDWARE Pole mount kit included.

Aruba Antenna -2x2-5010

Attachment – Form 42 FCC Experimental License

12.2. Southwest Antenna Part # 1032-012



Southwest Antenna Omni Bifilar Antenna, Circularly Polarized, 4.7 - 5.2 GHz, 3 dBic

Antenna Specifications

Parameter	Value	Units	Tolerance
Antenna Pattern	Omni Antenna		
Frequency Band	С		
Impedance	50	Ohms	
Minimum Frequency	4.7 / 4,700	GHz / MHz	
Maximum Frequency	5.2 / 5,200	GHz / MHz	
Frequency Bandwidth	0.5 / 500	GHz / MHz	
Maximum VSWR	2:1	Ratio	
Gain	3.00	dBic	
Horizontal (AZ) Beamwidth	360	Degrees	
Vertical (EL) Beamwidth	158	Degrees	
Ground Plane Required	No		
Radome Material	G10 Fiberglass		

Southwest Antenna – Key Parameters

15