

Exhibit 2: Supplemental Information

Table of Contents

1.	Purp	Dose	. 1
2.	Appl	licable HIRF Directives	. 1
	2.1.	Applicable Code of Federal Regulations (CFR)	.1
	2.2.	FAA Guidance	. 1
		Industry Guidance	
		ipment Information	
4.	Tran	nsmitted Signal Information	.3
		p Buzzer" Contacts	

1. Purpose

This exhibit provides supplemental Information in support of the application for Special Temporary Authorization (STA).

2. Applicable HIRF Directives

This Special Temporary Authorization (STA) is required to conduct testing necessary to support aircraft certification for High Intensity Radiated Fields (HIRF). The test data will be used to assure compliance with HIRF requirements as specified by the following directives.

2.1. Applicable Code of Federal Regulations (CFR)

14 CFR 23.1308	High-intensity Radiated Fields (HIRF) Protection
14 CFR 25.1317	High-intensity Radiated Fields (HIRF) Protection
14 CFR 27.1317	High-intensity Radiated Fields (HIRF) Protection
14 CFR 29.1317	High-intensity Radiated Fields (HIRF) Protection

2.2. FAA Guidance

High Intensity Radiated Fields (HIRF) Environment.

FAA 8110.71 Guidance for the Certification of Aircraft Operating in High Intensity

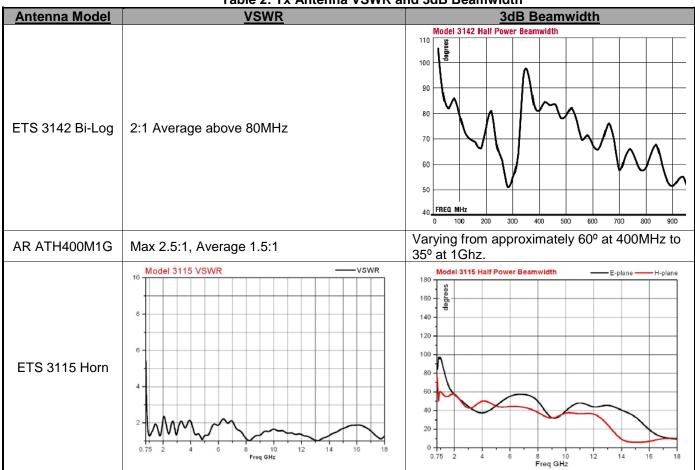
Radiated Field (HIRF) Environments

2.3. Industry Guidance

RTCA DO-160E/F/G	Environmental Conditions and Test Procedures for Airborne Equipment
ED90A	Radio Frequency Susceptibility Test Procedure

ED107 Guide to Certification of Aircraft in a High Intensity Field (HIRF) Environment SAE ARP5583A Guide to Certification of Aircraft in a High Intensity Radiated Field (HIRF)

Environment.


3. Equipment Information

All primary field generation and monitoring equipment is listed in Table 1 below.

Table 1: Equipment List

<u>Item</u>	<u>Manufacturer</u>	Model (See note)		
Signal Generator	Agilent	E8257D		
Spectrum Analyzer	Agilent	N9010A		
HF Amplifier	ENI	5100L		
Microwave Amplifier	Miteq	100M-20G 30dB 20dBm Amplifier		
Coax Cables	Miscellaneous	Various DC-18GHz Low Loss Coax		
Fiber Optic Receiver System	PPM	Fiber optic processing system		
Fiber Optic Cable	Miscellaneous	Fiber optic cables		
Directional Coupler	Amplifier Research	DC2500		
Current Probe	Eaton	94111-1		
Tx Dipole Antenna	Custom	10MHz Dipole Antenna		
Tx Bi-Log Antenna 30MHz-1GHz	ETS Lindgren	3142C		
Tx Horn Antenna 400MHz-1GHz	AR	ATH400M1G		
Tx Horn Antenna 1GHz-18GHz	ETS Lindgren	3115		
D-dot Sensor	EG & G	ACD-10A		
Broadband Rx Antenna	Custom	100M-18GHz Rx Antenna		
Note: Equivalent equipment may be substituted as necessary				

Table 2: Tx Antenna VSWR and 3dB Beamwidth

4. Transmitted Signal Information

Frequency

Various documents referenced in Section 2 of this exhibit provide guidance as to how to perform Low Level Coupling (LLC) testing. This guidance specifies the use of a signal generator and receiver system setup in a tracking generator configuration such that the test frequency is swept continuously across a specified frequency band. Testing using swept frequencies rather than widely spaced discrete frequencies allows for a more accurate measurement of aircraft and wiring resonant responses. This method also simplifies the test setup and minimizes frequency dwell time. The effective dwell time at each swept frequency is much less than 1s. We request permission to perform swept frequency testing across all approved test frequency bands listed in the application. Frequencies reserved for emergency services or local aircraft control will be omitted from the test.

Modulation

All testing is performed using a Continuous Wave (CW) signal (i.e. no modulation). Therefore, no actual data is being transmitted during the test.

Power

Transmitted power must be high enough to allow accurate monitoring using a sensitive receiver system. All transmitted power levels will remain less than the specified band specific Effective Radiated Power (ERP) as specified in the application.

The power levels requested are for maximum Effective Isotropic Radiated Power (EIRP) at the transmit antenna. Coordination with the local FCC and FAA can be accomplished as necessary.

5. "Stop Buzzer" Contacts

The following contacts can be contacted at any time to stop the test in case of a conflict.

<u>Name</u>	<u>Department</u>	Desk #
Steve Haycock	EMC Engineering	913-440-2284
Aaron Jones	EMC Engineering	913-440-5065
David Kerr	EMC Engineering	913-440-5208
Praf Patel	EMC Engineering	913-440-5422
Nick Filla	EMC Engineering	913-440-2650
Colin Curry	EMC Engineering	913-440-5434
Scott Goergen	Aircraft Certification	913-440-8437