ASTRA - RROCI: NTIA Space record data form

This form covers all three communications links included in the RROCI satellite:

2217 MHz data link and 8025-8225 payload data

NTIA requires the following data for space related experiments using government shared spectrum. For each transmit frequency, please provide the data for both ends of the transmit-receive link. Use Part A to describe the satellite to ground information. Part B is for all ground to space transmit links.

Part A: Space to Earth Downlink Data

Satellite Transmitter Data (Required for Each Frequency):

Transmit Frequency	<u>y:</u>	
2217 MHz		
Satellite Name: RRC	DCI	
Data Field	Data Answer	Description/Comments
Transmit Power		TRANSMIT POWER SUPPLIED TO THE ANTENNA INPUT TERMINAL, EXAMPLE, PWR01 W2
(PWR)		TRANSMIT POWER UNITS INCLUDE:
	PWR01 W2	W = WATT,
		K = KILOWATT,
Managara.	40.4	M = MEGAWATT THE WIDTH OF FREQUENCY BAND WHICH IS
Necessary	4M	JUST SUFFICIENT TO SUCCESSFULLY TRANSFER
Bandwidth		DATA. FORMULAS CAN BE FOUND IN ANNEX J
		OF THE NTIA MANUAL.
RF Emissions Data		2-SIDED EMISSION BANDWIDTH VALUES
-3 dB bandwidth		
-20 dB bandwidth		
-40 dB bandwidth		
-60 dB bandwidth		
Modulation Type	OQPSK	THE METHOD USED TO SUPERIMPOSE DATA ON THE CARRIER, EXAMPLE, BPSK, QPSK, GMSK.
Data Rate	2 Mbps	INFORMATION DATA RATE
Forward Error	Is FEC used? Yes $oxtimes$ No $oxtimes$	
Correction Coding	FEC Type:convolutional 7 ½	
	encoding,	
	FEC Rate:,	
Total Symbol Rate		DATA RATE COMBINED WITH FEC AND FRAME OVERHEAD RESULTING IN THE TOTAL SYMBOL RATE AT THE INPUTE TO THE SYMBOL MAPPER/MODULATOR.

Does transmitter have a beacon mode?	Yes □ No ⊠	BEACON MODE IS NORMALLY CONSIDERED A REGULAR AND PERIODIC SHORT DURATION TRANSMISSION THAT IS OFTEN USED TO ASSIST WITH TRACKING, DOPPLER COMPENSATION, OR SMALL SATELLITE IDENTIFICATION WHOSE TRANSMISSIONS ARE NOT LIMITED TO DURATIONS WHEN SUPPORTING GROUND STATIONS ARE VISIBLE.
If transmitter has a beacon mode, can the beacon be commanded off?	Yes □ No □	
Transmit Antenna Polarization (XAP)	XAP =R	POLARIZATIONS INCLUDE: H = HORIZONTAL, V = VERTICAL, S = HORIZONTAL AND VERTICAL, L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION
Transmit Antenna Orientation (XAZ)	XAZ = NB	NB= NARROWBEAM EC = EARTH COVERAGE
Transmit Antenna Dimension (XAD)	ANTENNA GAIN4.5 dBi, BEAMWIDTH, XAD01 4.5G040B	NTIA FORMAT (XAD), EXAMPLE, FOR 16 DBI ANTENNA GAIN AND 30 DEGREE BEAMWIDTH XAD01 16G030B
Type of satellite (State = SPCE) (City = Geo or Nongeo)	Type =Nongeo	CHOOSE EITHER: GEOSTATIONARY OR NONGEOSTATIONARY
For Geostationary Satellites	Longitude =	IF ANY SATELLITES ARE GEOSTATIONARY, REPORT ITS LATITUDE AS 000000N (XLA AND/OR RLA) AND REPORT ITS LONGITUDE IN DDDMMSS FORMAT (XLG AND/OR RLG).
For Nongeostationary (Orbital Data)	INCLINATION ANGLE 98 98 APOGEE IN KILOMETERS 642 APOGEE IN KILOMETERS 642 AND FRACTIONS OF HOURS IN DECIMAL 62 THE NUMBER OF SATELLITES IN THE SYSTEM 1 ORB = *ORB,98IN00642AP00642PE1.62H01NT01	IF ANY SATELLITES ARE NONGEOSTATIONARY, REPORT ITS INCLINATION ANGLE, APOGEE IN KILOMETERS, PERIGEE IN KILOMETERS, ORBITAL PERIOD IN HOURS AND FRACTIONS OF HOURS IN DECIMAL, THE NUMBER OF SATELLITES IN THE SYSTEM, THEN T01, EXAMPLE, REMO4 *ORB,98.0IN00510AP00510PE001.58H01NRT0 1, AND FOR SPACE-TO-SPACE COMMUNICATIONS WITH ANOTHER NONGEOSTATIONARY SATELLITE ADD AN ADDITIONAL *ORB FOR IT ENDING IN R01, EXAMPLE, REM05 *ORB,72.9IN03209AP00655PE013.46H01NRR0
For SunSynchronous Nongeostationary Orbits	Mean Local Time of Ascending Node (MLTAN) =23:00	MLTAN IS THE ANGLE BETWEEN AN ORBIT'S ASCENDING NODE AND THE MEAN SUN, OFTEN EXPRESSED AS UNIT OF TIME (HH:MM)

Earth Station Data	a (Receiver) at Each Earth Station Location	See Table Below
State (RSC)	RSC =	
City Name (RAL)	RAL =	
Latitude	Lat =	
(DDMMSS)		
Longitude	Lon =	
(DDDMMSS)		
Receive Antenna Polarization (RAP)	RAP =R	POLARIZATIONS INCLUDE: H = HORIZONTAL, V = VERTICAL, S = HORIZONTAL AND VERTICAL, L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION
Receive Antenna Orientation (RAZ)	RAZ01 V05 RAZ02 V05 RAZ03 V05 RAZ04 V05 RAZ05 V05	THE EARTH STATION RECEIVER ANTENNA MINIMUM OPERATING ANGLE OF ELEVATION (RAZ), V00 TO V90, EXAMPLE, RAZ01 V00
Receive Antenna Dimensions (RAD)	ANTENNA GAIN37.13, BEAMWIDTH2.56, AZIMUTHAL RANGE, THE SITE ELEVATION ABOVE MEAN SEA LEVEL IN METERS, THE ANTENNA HEIGHT ABOVE TERRAIN IN METERS, RAD = RAD01 37.13G02.56B001-360A0462.5H003 RAD02 37.13G02.56B001-360A0010.2H003 RAD03 37.13G02.56B001-360A0014.8H003 RAD04 37.13G02.56B001-360A0024.9H003	EXAMPLE ASSUMING NONGEOSTATIONARY, 16 DBI GAIN, 30 DEGREE BEAMWIDTH, AZIMUTHAL RANGE FROM 001-360, SITE ELEVATION OF 357 METERS, AND ANTENNA HEIGHT ABOVE TERRAIN OF 6 METERS: RAD01 16G030B001-360A00357H006
Receive Antenna Additional Information (For Parabolic Antennas) Number of	ANTENNA DIAMETER3.7 m, ANTENNA EFFICIENCY, Normally, one per week at Svalbard.	NUMBER OF TIMES THE SATELLITE WILL
Satellite Contacts Supported Per Day	If X band fails, then 14 per day at each ground station, but that would be the failsafe	COMMUNICATE WITH THE EARTH STATION IN THE SPACE TO EARTH DIRECTION (DOWNLINKS) EACH DAY
Expected Duration of Each Contact	Normally, less than 5 min per week	AVERAGE DURATION OF EACH CONTACT
Supported Operations	Satellite Health and Status Data ⊠ Mission Payload Data ⊠	SATELLITE HEALTH AND STATUS TELEMETRY AND/OR MISSION PAYLOAD DATA

FCC no	tes:
1.	Use S-Note S945.
2.	REM AGN, Cubesat, RROCI

Transmit Frequence	<u>y:</u>				
8025-8225					
Satellite Name: RROCI					
Data Field	Data Answer	Description/Comments			
Transmit Power	PWR = 3W	TRANSMIT POWER SUPPLIED TO THE ANTENNA INPUT TERMINAL, EXAMPLE, PWR01 W2			
(PWR)		TRANSMIT POWER UNITS INCLUDE:			
	PWR01 3W	W = WATT,			
		K = KILOWATT, M = MEGAWATT			
Necessary	200M	THE WIDTH OF FREQUENCY BAND WHICH IS JUST			
Bandwidth		SUFFICIENT TO SUCCESSFULLY TRANSFER DATA. FORMULAS CAN BE FOUND IN ANNEX J OF THE			
		NTIA MANUAL.			
RF Emissions Data	G1D	2-SIDED EMISSION BANDWIDTH VALUES			
-3 dB bandwidth					
-20 dB bandwidth					
-40 dB bandwidth					
-60 dB bandwidth					
Modulation Type	OQPSK	THE METHOD USED TO SUPERIMPOSE DATA ON THE CARRIER, EXAMPLE, BPSK, QPSK, GMSK.			
Data Rate	100 Mbps	INFORMATION DATA RATE			
Forward Error	Is FEC used? Yes $oxtimes$ No $oxtimes$				
Correction Coding	FEC Type:convolutional 7 ½				
	encoding,				
	FEC Rate:,				
Total Symbol Rate		DATA RATE COMBINED WITH FEC AND FRAME OVERHEAD RESULTING IN THE TOTAL SYMBOL			
		RATE AT THE INPUTE TO THE SYMBOL			
		MAPPER/MODULATOR.			
Does transmitter	Yes 🗆	BEACON MODE IS NORMALLY CONSIDERED A REGULAR AND PERIODIC SHORT DURATION			
have a beacon	No ⊠	TRANSMISSION THAT IS OFTEN USED TO ASSIST			
mode?		WITH TRACKING, DOPPLER COMPENSATION, OR SMALL SATELLITE IDENTIFICATION WHOSE			
		TRANSMISSIONS ARE NOT LIMITED TO			
		DURATIONS WHEN SUPPORTING GROUND			
If transmitter has	Yes □	STATIONS ARE VISIBLE.			
a beacon mode,	No □				
can the beacon be					
commanded off?					

Transmit Antenna Polarization (XAP) Transmit Antenna Orientation (XAZ) Transmit Antenna Dimension (XAD)	XAP =R XAZ = NB ANTENNA GAIN10.5, BEAMWIDTH40, XAD = XAD01 10.5G040B	POLARIZATIONS INCLUDE: H = HORIZONTAL, V = VERTICAL, S = HORIZONTAL AND VERTICAL, L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION NB= NARROWBEAM EC = EARTH COVERAGE NTIA FORMAT (XAD), EXAMPLE, FOR 16 DBI ANTENNA GAIN AND 30 DEGREE BEAMWIDTH XADO1 16G030B
Type of satellite (State = SPCE) (City = Geo or Nongeo)	Type =Nongeo	CHOOSE EITHER: GEOSTATIONARY OR NONGEOSTATIONARY
For Geostationary Satellites	Longitude =	IF ANY SATELLITES ARE GEOSTATIONARY, REPORT ITS LATITUDE AS 000000N (XLA AND/OR RLA) AND REPORT ITS LONGITUDE IN DDDMMSS FORMAT (XLG AND/OR RLG).
For Nongeostationary (Orbital Data)	INCLINATION ANGLE98, APOGEE IN KILOMETERS642, PERIGEE IN KILOMETERS642, ORBITAL PERIOD IN HOURS _1AND FRACTIONS OF HOURS IN DECIMAL62, THE NUMBER OF SATELLITES IN THE SYSTEM1, ORB = *ORB,98IN00642AP00642PE01.62H01NT 01	IF ANY SATELLITES ARE NONGEOSTATIONARY, REPORT ITS INCLINATION ANGLE, APOGEE IN KILOMETERS, PERIGEE IN KILOMETERS, ORBITAL PERIOD IN HOURS AND FRACTIONS OF HOURS IN DECIMAL, THE NUMBER OF SATELLITES IN THE SYSTEM, THEN T01, EXAMPLE, REMO4 *ORB,98.0IN00510AP00510PE001.58H01NRT01, AND FOR SPACE-TO-SPACE COMMUNICATIONS WITH ANOTHER NONGEOSTATIONARY SATELLITE ADD AN ADDITIONAL *ORB FOR IT ENDING IN R01, EXAMPLE, REM05 *ORB,72.9IN03209AP00655PE013.46H01NRR01
For SunSynchronous Nongeostationary Orbits	Mean Local Time of Ascending Node (MLTAN) =23:00	MLTAN IS THE ANGLE BETWEEN AN ORBIT'S ASCENDING NODE AND THE MEAN SUN, OFTEN EXPRESSED AS UNIT OF TIME (HH:MM)
Earth Station Data	□ a (Receiver) at Each Earth Station Location	on – see table below
State (RSC)	RSC =	
City Name (RAL)	RAL =	
Latitude (DDMMSS)	Lat =	
Longitude (DDDMMSS)	Lon =	

Receive Antenna Polarization (RAP) Receive Antenna Orientation (RAZ)	RAP =R RAZ = 5 degrees RAZ01 V05 RAZ02 V05 RAZ03 V05 RAZ04 V05 RAZ05 V05	POLARIZATIONS INCLUDE: H = HORIZONTAL, V = VERTICAL, S = HORIZONTAL AND VERTICAL, L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION THE EARTH STATION RECEIVER ANTENNA MINIMUM OPERATING ANGLE OF ELEVATION (RAZ), V00 TO V90, EXAMPLE, RAZ01 V00
Receive Antenna Dimensions (RAD) Receive Antenna Additional	ANTENNA GAIN47.01, BEAMWIDTH69, AZIMUTHAL RANGE, THE SITE ELEVATION ABOVE MEAN SEA LEVEL IN METERS, THE ANTENNA HEIGHT ABOVE TERRAIN IN METERS, RAD = RAD01 47G00.69B001-360A0462.5H003 RAD02 47G00.69B001-360A0010.2H003 RAD03 47G00.69B001-360A0014.8H003 RAD04 47G00.69B001-360A1254.5H003 RAD05 47G00.69B001-360A0024.9H003 ANTENNA DIAMETER3.7 m	EXAMPLE ASSUMING NONGEOSTATIONARY, 16 DBI GAIN, 30 DEGREE BEAMWIDTH, AZIMUTHAL RANGE FROM 001-360, SITE ELEVATION OF 357 METERS, AND ANTENNA HEIGHT ABOVE TERRAIN OF 6 METERS: RAD01 16G030B001-360A00357H006
Information (For Parabolic Antennas)	ANTENNA EFFICIENCY,	
Number of Satellite Contacts Supported Per Day	Svalbard - 14 per day Awarua – 1 per day Punta Arenas – 1 per day Queen Maud – 2 per day Long Beach – 2 per day	NUMBER OF TIMES THE SATELLITE WILL COMMUNICATE WITH THE EARTH STATION IN THE SPACE TO EARTH DIRECTION (DOWNLINKS) EACH DAY
Expected Duration of Each Contact	Less than 10 min (expected to be 5 min)	AVERAGE DURATION OF EACH CONTACT
Supported Operations	Satellite Health and Status Data ⊠ Mission Payload Data ⊠	SATELLITE HEALTH AND STATUS TELEMETRY AND/OR MISSION PAYLOAD DATA
FCC notes: 3. Use S-Note 4. REM AGN,	e S945. Cubesat, RROCI	

Part B: Ground Stations, Earth to Space link data:

Earth Station Transmitter Data (Required for Each Frequency at Each Earth Station Location)

There is only 1 earth to space link, so this table has all of the relevant data.

Transmit Frequency	y:_2085 MHz	
State (XSC)	XSC =	
City Name (XAL)	XAL =	
Latitude (DDMMSS)	Lat =	
Longitude (DDDMMSS)	Lon =	
Transmit Power (PWR)	PWR = 10 W	TRANSMIT POWER SUPPLIED TO THE ANTENNA INPUT TERMINAL, EXAMPLE, PWR01 W2 TRANSMIT POWER UNITS INCLUDE: W = WATT, K = KILOWATT, M = MEGAWATT
Necessary Bandwidth	512K	THE WIDTH OF FREQUENCY BAND WHICH IS JUST SUFFICIENT TO SUCCESSFULLY TRANSFER DATA. FORMULAS CAN BE FOUND IN ANNEX J OF THE NTIA MANUAL.
RF Emissions Data	G1D	2-SIDED EMISSION BANDWIDTH VALUES
-3 dB bandwidth		
-20 dB bandwidth		
-40 dB bandwidth		
-60 dB bandwidth		7
Modulation Type		THE METHOD USED TO SUPERIMPOSE DATA ON
Data Rate	256 kbps	THE CARRIER, EXAMPLE, BPSK, QPSK, GMSK. INFORMATION DATA RATE
Forward Error	Is FEC used? Yes No	
Correction Coding	FEC Type:,	
correction county	FEC Rate:,	
Total Symbol Rate		DATA RATE COMBINED WITH FEC AND FRAME OVERHEAD RESULTING IN THE TOTAL SYMBOL RATE AT THE INPUTE TO THE SYMBOL MAPPER/MODULATOR.
Transmit Antenna Polarization (XAP)	XAP =R	POLARIZATIONS INCLUDE: H = HORIZONTAL, V = VERTICAL, S = HORIZONTAL AND VERTICAL, L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION
Transmit Antenna Orientation (XAZ)	XAZ = 5 degrees XAZ01 V05 XAZ02 V05 XAZ03 V05 XAZ04 V05 XAZ05 V05	THE EARTH STATION TRANSMITTER ANTENNA MINIMUM OPERATING ANGLE OF ELEVATION (XAZ), V00 TO V90, EXAMPLE, XAZ01 V00

Transmit Antenna Dimensions (XAD)	ANTENNA GAIN35.91, BEAMWIDTH2.73, AZIMUTHAL RANGE, THE SITE ELEVATION ABOVE MEAN SEA LEVEL IN METERS, THE ANTENNA HEIGHT ABOVE TERRAIN IN METERS, XAD = XAD01 36G2.73B001-360A0462.5H003 XAD02 36G2.73B001-360A0010.2H003 XAD03 36G2.73B001-360A0014.8H003 XAD04 36G2.73B001-360A0024.9H003	EXAMPLE ASSUMING NONGEOSTATIONARY, 16 DBI GAIN, 30 DEGREE BEAMWIDTH, AZIMUTHAL RANGE FROM 001-360, SITE ELEVATION OF 357 METERS, AND ANTENNA HEIGHT ABOVE TERRAIN OF 6 METERS: XAD01 16G030B001-360A00357H006
Transmit Antenna Additional Information (For Parabolic Antennas)	ANTENNA DIAMETER3.7 m, ANTENNA EFFICIENCY,	
Number of Satellite Contacts Supported Per Day	Svalbard – 14 Awarua – 1 Punta Arenas – 1 Queen Maud – 2 Long Beach - 2	NUMBER OF TIMES THE EARTH STATION WILL COMMUNICATE WITH THE STATELLITE IN THE EARTH TO SPACE DIRECTION (UPINKS) EACH DAY
Expected Duration of Each Contact	Less than 10 min	AVERAGE DURATION OF EACH CONTACT
Satellite Receive Sp	pecifications	
Receive Antenna Polarization (RAP)	RAP = R	POLARIZATIONS INCLUDE: H = HORIZONTAL, V = VERTICAL, S = HORIZONTAL AND VERTICAL, L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION
Receive Antenna Orientation (RAZ)	RAZ = NB	NB= NARROWBEAM EC = EARTH COVERAGE
Receive Antenna Dimension (RAD)	ANTENNA GAIN4.5, BEAMWIDTH, RAD = RAD01 4.5G040B	NTIA FORMAT(RAD), EXAMPLE, FOR 16 DBI ANTENNA GAIN AND 30 DEGREE BEAMWIDTH RAD01 16G030B
Type of satellite (State = SPCE) City = Geo or Nongeo	Type = nongeo	CHOOSE EITHER: GEOSTATIONARY OR NONGEOSTATIONARY
For Geostationary Satellites	Longitude =	IF ANY SATELLITES ARE GEOSTATIONARY, REPORT ITS LATITUDE AS 000000N (XLA AND/OR RLA) AND REPORT ITS LONGITUDE IN DDDMMSS FORMAT (XLG AND/OR RLG).

For Nongeostationary (Orbital Data)	INCLINATION ANGLE98	IF ANY SATELLITES ARE NONGEOSTATIONARY, REPORT ITS INCLINATION ANGLE, APOGEE IN KILOMETERS, PERIGEE IN KILOMETERS, ORBITAL PERIOD IN HOURS AND FRACTIONS OF HOURS IN DECIMAL, THE NUMBER OF SATELLITES IN THE SYSTEM, THEN T01, EXAMPLE, REM04 *ORB,98.0IN00510AP00510PE001.58H01NRT01, AND FOR SPACE-TO-SPACE COMMUNICATIONS WITH ANOTHER NONGEOSTATIONARY SATELLITE ADD AN ADDITIONAL *ORB FOR IT ENDING IN R01, EXAMPLE, REM05 *ORB,72.9IN03209AP00655PE013.46H01NRR01
For SunSynchronous	Mean Local Time of Ascending Node (MLTAN) =23:00	MLTAN IS THE ANGLE BETWEEN AN ORBIT'S ASCENDING NODE AND THE MEAN SUN, OFTEN EXPRESSED AS UNIT OF TIME (HH:MM)
Nongeostationary Orbits		

Ground Station Information:

Name of station, city and country and site elevation	Lat (North)	Long (East)	X band	S band – expected to be in use only once a week for 5 min	# of X band contacts w/satellite per day, time of each
Svalbard, Norway 1503 Ft	78-13-47 N	15-23-53 E	Beamwidth = 0.69 ° Gain: 47.01 dBi	Beamwidth = 2.73 ° Gain: 35.91 dBi	Contacts = ~ 14 x / day Duration - ~ 10 min / contact
Awarua, New Zealand Venture Southland Ground station, 781 Colyer Road 33 Ft.	46-31-45 S	168-22-52 E	Beamwidth = 0.69 ° Gain: 47.01 dBi	Beamwidth = 2.73 ° Gain: 35.91 dBi	Contacts = ~ 1 x / day Duration - ~ 10 min / contact
Punta Arenas, Chile Sunta Arenas SpA, El Vergel 2850 Providencia, Santiago 48 Ft	52-56-17 S	70-51-28 W	Beamwidth = 0.69 ° Gain: 47.01 dBi	Beamwidth = 2.73 ° Gain: 35.91 dBi	Contacts = ~ 1 x / day Duration - ~ 10 min / contact
TrollSat, Queen Maud Land, Antarctica 4077 Ft.	72-00-06 S	2-31-32 E	Beamwidth = 0.69 ° Gain: 47.01 dBi	Beamwidth = 2.73 ° Gain: 35.91 dBi	Contacts = ~ 2 x / day Duration - ~ 10 min / contact

Long Beach,	33-49-27 N	118-08-47	Beamwidth =	Beamwidth =	Contacts = ~ 2 x / day
California USA		W	0.69 °	2.73 °	Duration - ~ 10 min /
4022 E.			Gain: 47.01 dBi	Gain: 35.91 dBi	contact
Conant St.,					
Long Beach					
81 Ft.					