NTIA Space record data form

NTIA requires the following data for space related experiments using government shared spectrum. For each transmit frequency, please provide the data for both ends of the transmit-receive link. Use Part A to describe the satellite to ground information. Part B is for all ground to space transmit links.

Part A: Space to Earth Downlink Data

Satellite Transmitter Data (Required for Each Frequency)

Transmit Frequency	<i>y</i> :	
2217 MHz		
Satellite Name: RRC	DCI	
		-
Data Field	Data Answer	Description/Comments
Transmit Power		TRANSMIT POWER SUPPLIED TO THE ANTENNA INPUT TERMINAL, EXAMPLE, PWR01 W2
(PWR)		TRANSMIT POWER UNITS INCLUDE:
	PWR01 W2	W = WATT,
		K = KILOWATT, M = MEGAWATT
Necessary	4M	THE WIDTH OF FREQUENCY BAND WHICH IS
Bandwidth		JUST SUFFICIENT TO SUCCESSFULLY TRANSFER DATA. FORMULAS CAN BE FOUND IN ANNEX J
		OF THE NTIA MANUAL.
RF Emissions Data		2-SIDED EMISSION BANDWIDTH VALUES
-3 dB bandwidth		
-20 dB bandwidth		
-40 dB bandwidth		<u>_</u>
-60 dB bandwidth		
Modulation Type	OQPSK	THE METHOD USED TO SUPERIMPOSE DATA ON THE CARRIER, EXAMPLE, BPSK, QPSK,
		GMSK.
Data Rate	2 Mbps	INFORMATION DATA RATE
Forward Error	Is FEC used? Yes $oxtimes$ No $oxtimes$	
Correction Coding	FEC Type:convolutional 7 ½	
	encoding,	
	FEC Rate:,	
Total Symbol Rate		DATA RATE COMBINED WITH FEC AND FRAME OVERHEAD RESULTING IN THE TOTAL SYMBOL
		RATE AT THE INPUTE TO THE SYMBOL
	_	MAPPER/MODULATOR.
Does transmitter	Yes 🗆	BEACON MODE IS NORMALLY CONSIDERED A REGULAR AND PERIODIC SHORT DURATION
have a beacon	No ⊠	TRANSMISSION THAT IS OFTEN USED TO ASSIST
mode?		WITH TRACKING, DOPPLER COMPENSATION, OR SMALL SATELLITE IDENTIFICATION WHOSE
		TRANSMISSIONS ARE NOT LIMITED TO
		DURATIONS WHEN SUPPORTING GROUND
	1	I STATIONS ARE VISIRIE

If transmitter has	Yes 🗆	
	100 =	
a beacon mode,	No □	
can the beacon be		
commanded off?		DOLADIZATIONS INCLUDE.
Transmit Antenna	XAP =R	POLARIZATIONS INCLUDE: H = HORIZONTAL,
Polarization (XAP)		V = VERTICAL,
		S = HORIZONTAL AND VERTICAL,
		L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR,
		T = RIGHT AND LEFT HAND CIRCULAR,
		J = LINEAR POLARIZATION
Transmit Antenna	XAZ = NB	NB= NARROWBEAM EC = EARTH COVERAGE
Orientation (XAZ)		
Transmit Antenna	ANTENNA GAIN4.5 dBi,	NTIA FORMAT (XAD), EXAMPLE, FOR 16 DBI ANTENNA GAIN AND 30 DEGREE BEAMWIDTH
Dimension (XAD)	BEAMWIDTH,	XAD01 16G030B
	XAD01 4.5G040B	
Type of satellite	Type =Nongeo	CHOOSE EITHER:
(State = SPCE)		GEOSTATIONARY OR NONGEOSTATIONARY
(City = Geo or		
Nongeo)		
For Geostationary	Longitude =	IF ANY SATELLITES ARE GEOSTATIONARY,
Satellites		REPORT ITS LATITUDE AS 000000N (XLA
		AND/OR RLA) AND REPORT ITS LONGITUDE IN DDDMMSS FORMAT (XLG AND/OR RLG).
For	INCLINATION ANGLE98,	IF ANY SATELLITES ARE NONGEOSTATIONARY,
Nongeostationary	APOGEE IN KILOMETERS 642 ,	REPORT ITS INCLINATION ANGLE, APOGEE
(Orbital Data)	PERIGEE IN KILOMETERS 642 ,	IN KILOMETERS, PERIGEE IN KILOMETERS, ORBITAL PERIOD IN HOURS AND FRACTIONS OF
(Orbital Bata)	ORBITAL PERIOD IN HOURS 1 AND	HOURS IN DECIMAL, THE NUMBER OF
	FRACTIONS OF HOURS IN	SATELLITES IN THE SYSTEM, THEN TO1,
	DECIMAL62,	EXAMPLE, REM04
	THE NUMBER OF SATELLITES IN THE	*ORB,98.0IN00510AP00510PE001.58H01NRT0
	SYSTEM 1 ,	1, AND FOR SPACE-TO-SPACE
	3131ElVI1,	COMMUNICATIONS WITH ANOTHER NONGEOSTATIONARY SATELLITE ADD AN
	ODD -	ADDITIONAL
	ORB =	*ORB FOR IT ENDING IN R01, EXAMPLE, REM05
	*ORB,98IN00642AP00642PE1.62H01NT01	*ORB,72.9IN03209AP00655PE013.46H01NRR0
For	Mean Local Time of Ascending Node	MLTAN IS THE ANGLE BETWEEN AN ORBIT'S
SunSynchronous	(MLTAN) =23:00	ASCENDING NODE AND THE MEAN SUN, OFTEN EXPRESSED AS UNIT OF TIME (HH:MM)
Nongeostationary		,
Orbits		
Earth Station Dat	a (Receiver) at Each Earth Station Location	See Table Below
State (RSC)	RSC =	
City Name (RAL)	RAL =	
Latitude	Lat =	
(DDMMSS)		

Longitude (DDDMMSS)	Lon =	
Receive Antenna Polarization (RAP)	RAP =R	POLARIZATIONS INCLUDE: H = HORIZONTAL, V = VERTICAL, S = HORIZONTAL AND VERTICAL, L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION
Receive Antenna		THE EARTH STATION RECEIVER ANTENNA
Orientation (RAZ)	RAZ01 V05 RAZ02 V05 RAZ03 V05 RAZ04 V05 RAZ05 V05	MINIMUM OPERATING ANGLE OF ELEVATION (RAZ), V00 TO V90, EXAMPLE, RAZ01 V00
Receive Antenna Dimensions (RAD)	ANTENNA GAIN37.13, BEAMWIDTH2.56, AZIMUTHAL RANGE, THE SITE ELEVATION ABOVE MEAN SEA LEVEL IN METERS, THE ANTENNA HEIGHT ABOVE TERRAIN IN METERS, RAD = RAD01 37.13G02.56B001-360A0462.5H003 RAD02 37.13G02.56B001-360A0010.2H003 RAD03 37.13G02.56B001-360A0014.8H003 RAD04 37.13G02.56B001-360A1254.5H003 RAD05 37.13G02.56B001-360A0024.9H003	EXAMPLE ASSUMING NONGEOSTATIONARY, 16 DBI GAIN, 30 DEGREE BEAMWIDTH, AZIMUTHAL RANGE FROM 001-360, SITE ELEVATION OF 357 METERS, AND ANTENNA HEIGHT ABOVE TERRAIN OF 6 METERS: RAD01 16G030B001-360A00357H006
Receive Antenna Additional Information (For Parabolic	ANTENNA DIAMETER3.7 m, ANTENNA EFFICIENCY,	
Antennas) Number of Satellite Contacts Supported Per Day	Normally, one per week at Svalbard. If X band fails, then 14 per day at each ground station, but that would be the failsafe	NUMBER OF TIMES THE SATELLITE WILL COMMUNICATE WITH THE EARTH STATION IN THE SPACE TO EARTH DIRECTION (DOWNLINKS) EACH DAY
Expected Duration of Each Contact	Normally, less than 5 min per week	AVERAGE DURATION OF EACH CONTACT
Supported Operations	Satellite Health and Status Data ⊠ Mission Payload Data ⊠	SATELLITE HEALTH AND STATUS TELEMETRY AND/OR MISSION PAYLOAD DATA
FCC notes: 1. Use S-Note	2 \$945.	

2. REM AGN, Cubesat, RROCI

Part B: Ground Stations, Earth to Space link data:

Earth Station Transmitter Data (Required for Each Frequency at Each Earth Station Location)

Transmit Frequency	v: 2085 MHz	
State (XSC)	XSC =	
City Name (XAL)	XAL =	
Latitude	Lat =	
(DDMMSS)		
Longitude	Lon =	
(DDDMMSS)		
Transmit Power	PWR = 10 W	TRANSMIT POWER SUPPLIED TO THE ANTENNA
(PWR)		INPUT TERMINAL, EXAMPLE, PWR01 W2 TRANSMIT POWER UNITS INCLUDE:
		W = WATT,
		K = KILOWATT,
NI	F4.21/	M = MEGAWATT THE WIDTH OF FREQUENCY BAND WHICH IS JUST
Necessary	512K	SUFFICIENT TO SUCCESSFULLY TRANSFER DATA.
Bandwidth		FORMULAS CAN BE FOUND IN ANNEX J OF THE
		NTIA MANUAL.
RF Emissions Data	G1D	2-SIDED EMISSION BANDWIDTH VALUES
-3 dB bandwidth		
-20 dB bandwidth		
-40 dB bandwidth		
-60 dB bandwidth		
Modulation Type		THE METHOD USED TO SUPERIMPOSE DATA ON
Data Rate	2256 kbps	THE CARRIER, EXAMPLE, BPSK, QPSK, GMSK. INFORMATION DATA RATE
Forward Error		
	Is FEC used? Yes □ No ☒	
Correction Coding	FEC Type:,	
	FEC Rate:,	
Total Symbol Rate		DATA RATE COMBINED WITH FEC AND FRAME
,		OVERHEAD RESULTING IN THE TOTAL SYMBOL
		RATE AT THE INPUTE TO THE SYMBOL MAPPER/MODULATOR.
Transmit Antenna	XAP =R	POLARIZATIONS INCLUDE:
Polarization (XAP)	70 "	H = HORIZONTAL,
7 010112001011 (7011)		V = VERTICAL, S = HORIZONTAL AND VERTICAL,
		L = LEFT HAND CIRCULAR,
		R = RIGHT HAND CIRCULAR,
		T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION
Transmit Antenna		THE EARTH STATION TRANSMITTER ANTENNA
Orientation (XAZ)	XAZ01 V05	MINIMUM OPERATING ANGLE OF
OHEHICALIOH (AAZ)	XAZ01 V05 XAZ02 V05	ELEVATION (XAZ), V00 TO V90, EXAMPLE, XAZ01
		V00
	XAZ04 V05	
	XAZ04 V05	
	XAZ05 V05	

Transmit Antenna Dimensions (XAD)	ANTENNA GAIN37.13 dBi, BEAMWIDTH2.56 degrees, AZIMUTHAL RANGE, THE SITE ELEVATION ABOVE MEAN SEA LEVEL IN METERS, THE ANTENNA HEIGHT ABOVE TERRAIN IN METERS, XAD01 37.13G2.56B001-360A0462.5H003 XAD02 37.13G2.56B001-360A0010.2H003 XAD03 37.13G2.56B001-360A0014.8H003 XAD04 37.13G2.56B001-360A1254.5H003 XAD05 37.13G2.56B001-360A0024.9H003	EXAMPLE ASSUMING NONGEOSTATIONARY, 16 DBI GAIN, 30 DEGREE BEAMWIDTH, AZIMUTHAL RANGE FROM 001-360, SITE ELEVATION OF 357 METERS, AND ANTENNA HEIGHT ABOVE TERRAIN OF 6 METERS: XAD01 16G030B001-360A00357H006	
Transmit Antenna Additional Information (For Parabolic Antennas)	ANTENNA DIAMETER3.7 m, ANTENNA EFFICIENCY,		
Number of Satellite Contacts Supported Per Day	Svalbard – 14 per day Awarua – 1 per day Punta Arenas – 1 per day Queen Maud – 2 per day Long Beach – 2 per day	NUMBER OF TIMES THE EARTH STATION WILL COMMUNICATE WITH THE STATELLITE IN THE EARTH TO SPACE DIRECTION (UPINKS) EACH DAY	
Expected Duration of Each Contact	Less than 10 minutes per contact	AVERAGE DURATION OF EACH CONTACT	
Satellite Receive Sp	pecifications		
Receive Antenna Polarization (RAP)	RAP = R	POLARIZATIONS INCLUDE: H = HORIZONTAL, V = VERTICAL, S = HORIZONTAL AND VERTICAL, L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION	
Receive Antenna Orientation (RAZ)	RAZ = NB	NB= NARROWBEAM EC = EARTH COVERAGE	
Receive Antenna Dimension (RAD)	ANTENNA GAIN4.5 dBi, BEAMWIDTH40, RAD = RAD01 4.5G040B	NTIA FORMAT(RAD), EXAMPLE, FOR 16 DBI ANTENNA GAIN AND 30 DEGREE BEAMWIDTH RAD01 16G030B	
Type of satellite (State = SPCE) City = Geo or Nongeo	Type = nongeo	CHOOSE EITHER: GEOSTATIONARY OR NONGEOSTATIONARY	
For Geostationary Satellites	Longitude =	IF ANY SATELLITES ARE GEOSTATIONARY, REPORT ITS LATITUDE AS 000000N (XLA AND/OR RLA) AND REPORT ITS LONGITUDE IN DDDMMSS FORMAT (XLG AND/OR RLG).	

For Nongeostationary (Orbital Data)	INCLINATION ANGLE98	IF ANY SATELLITES ARE NONGEOSTATIONARY, REPORT ITS INCLINATION ANGLE, APOGEE IN KILOMETERS, PERIGEE IN KILOMETERS, ORBITAL PERIOD IN HOURS AND FRACTIONS OF HOURS IN DECIMAL, THE NUMBER OF SATELLITES IN THE SYSTEM, THEN T01, EXAMPLE, REM04 *ORB,98.0IN00510AP00510PE001.58H01NRT01, AND FOR SPACE-TO-SPACE COMMUNICATIONS WITH ANOTHER NONGEOSTATIONARY SATELLITE ADD AN ADDITIONAL *ORB FOR IT ENDING IN R01, EXAMPLE, REM05 *ORB,72.9IN03209AP00655PE013.46H01NRR01
For SunSynchronous Nongeostationary Orbits	Mean Local Time of Ascending Node (MLTAN) =23:00	MLTAN IS THE ANGLE BETWEEN AN ORBIT'S ASCENDING NODE AND THE MEAN SUN, OFTEN EXPRESSED AS UNIT OF TIME (HH:MM)

Ground Station Information:

Name of station, city and country and site	Lat (North)	Long (East)	X band	S band – expected to be in use only once a	# of X band contacts w/satellite per day, time of each
elevation				week for 5 min	
Svalbard, Norway 1503 Ft	78-13-47 N	15-23-53 E	Beamwidth = 0.69 ° Gain: 47.01 dBi	Beamwidth = 2.73 ° Gain: 35.91 dBi	Contacts = ~ 14 x / day Duration - ~ 10 min / contact
Awarua, New Zealand Venture Southland Ground station, 781 Colyer Road 33 Ft.	46-31-45 S	168-22-52 E	Beamwidth = 0.69 ° Gain: 47.01 dBi	Beamwidth = 2.73 ° Gain: 35.91 dBi	Contacts = ~ 1 x / day Duration - ~ 10 min / contact
Punta Arenas, Chile Sunta Arenas SpA, El Vergel 2850 Providencia, Santiago 48 Ft	52-56-17 S	70-51-28 W	Beamwidth = 0.69 ° Gain: 47.01 dBi	Beamwidth = 2.73 ° Gain: 35.91 dBi	Contacts = ~ 1 x / day Duration - ~ 10 min / contact
TrollSat, Queen Maud Land, Antarctica 4077 Ft.	72-00-06 S	2-31-32 E	Beamwidth = 0.69 ° Gain: 47.01 dBi	Beamwidth = 2.73 ° Gain: 35.91 dBi	Contacts = ~ 2 x / day Duration - ~ 10 min / contact
Long Beach, California USA 4022 E. Conant St., Long Beach 81 Ft.	33-49-27 N	118-08-47 W	Beamwidth = 0.69 ° Gain: 47.01 dBi	Beamwidth = 2.73 ° Gain: 35.91 dBi	Contacts = ~ 2 x / day Duration - ~ 10 min / contact