NTIA Space record data form

NTIA requires the following data for space related experiments using government shared spectrum. For each transmit frequency, please provide the data for both ends of the transmit-receive link. Use Part A to describe the satellite to ground information. Part B is for all ground to space transmit links.

Part A: Space to Earth Downlink Data

Satellite Transmitter Data (Required for Each Frequency)

Transmit Frequency	r:	
2217 MHz		
Satellite Name: RRC	OCI	
Data Field	Data Answer	Description/Comments
Transmit Power (PWR)	PWR = 2W	TRANSMIT POWER SUPPLIED TO THE ANTENNA INPUT TERMINAL, EXAMPLE, PWR01 W2 TRANSMIT POWER UNITS INCLUDE: W = WATT, K = KILOWATT, M = MEGAWATT
Necessary Bandwidth	4M	THE WIDTH OF FREQUENCY BAND WHICH IS JUST SUFFICIENT TO SUCCESSFULLY TRANSFER DATA. FORMULAS CAN BE FOUND IN ANNEX J OF THE NTIA MANUAL.
RF Emissions Data		2-SIDED EMISSION BANDWIDTH VALUES
-3 dB bandwidth		
-20 dB bandwidth		
-40 dB bandwidth		
-60 dB bandwidth		
Modulation Type	OQPSK	THE METHOD USED TO SUPERIMPOSE DATA ON THE CARRIER, EXAMPLE, BPSK, QPSK, GMSK.
Data Rate	2 Mbps	INFORMATION DATA RATE
Forward Error	Is FEC used? Yes ⊠ No □	
Correction Coding	FEC Type:convolutional 7 ½	
	encoding,	
	FEC Rate:	
Total Symbol Rate		DATA RATE COMBINED WITH FEC AND FRAME OVERHEAD RESULTING IN THE TOTAL SYMBOL RATE AT THE INPUTE TO THE SYMBOL MAPPER/MODULATOR.
Does transmitter have a beacon mode?	Yes □ No ⊠	BEACON MODE IS NORMALLY CONSIDERED A REGULAR AND PERIODIC SHORT DURATION TRANSMISSION THAT IS OFTEN USED TO ASSIST WITH TRACKING, DOPPLER COMPENSATION, OR SMALL SATELLITE IDENTIFICATION WHOSE TRANSMISSIONS ARE NOT LIMITED TO DURATIONS WHEN SUPPORTING GROUND STATIONS ARE VISIBLE

If transmitter has	Yes □			
a beacon mode,	No □			
can the beacon be				
commanded off?				
Transmit Antenna	XAP =R	POLARIZATIONS INCLUDE:		
Polarization (XAP)		H = HORIZONTAL, V = VERTICAL,		
, ,		S = HORIZONTAL AND VERTICAL,		
		L = LEFT HAND CIRCULAR,		
		R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR,		
		J = LINEAR POLARIZATION		
Transmit Antenna	XAZ = nb	NB= NARROWBEAM		
Orientation (XAZ)		EC = EARTH COVERAGE		
Transmit Antenna	ANTENNA GAIN4.5 dBi,	NTIA FORMAT (XAD), EXAMPLE, FOR 16 DBI		
Dimension (XAD)	BEAMWIDTH	ANTENNA GAIN AND 30 DEGREE BEAMWIDTH XAD01 16G030B		
	XAD =	70.502 2000002		
Type of satellite	Type =Nongeo	CHOOSE EITHER:		
(State = SPCE)		GEOSTATIONARY OR NONGEOSTATIONARY		
(City = Geo or				
Nongeo)				
For Geostationary	Longitude =	IF ANY SATELLITES ARE GEOSTATIONARY, REPORT		
Satellites		ITS LATITUDE AS 000000N (XLA AND/OR RLA) AND REPORT ITS LONGITUDE IN DDDMMSS FORMAT		
		(XLG AND/OR RLG).		
For	INCLINATION ANGLE-	IF ANY SATELLITES ARE NONGEOSTATIONARY,		
Nongeostationary	98	REPORT ITS INCLINATION ANGLE, APOGEE IN KILOMETERS, PERIGEE IN KILOMETERS,		
(Orbital Data)	APOGEE IN KILOMETERS642,	ORBITAL PERIOD IN HOURS AND FRACTIONS OF		
	PERIGEE IN KILOMETERS642,	HOURS IN DECIMAL, THE NUMBER OF SATELLITES IN THE SYSTEM, THEN TO1, EXAMPLE,		
	ORBITAL PERIOD IN HOURS	REM04		
	_1AND FRACTIONS OF HOURS IN	*ORB,98.0IN00510AP00510PE001.58H01NRT01,		
	DECIMAL62,	AND FOR SPACE-TO-SPACE COMMUNICATIONS WITH ANOTHER		
	THE NUMBER OF SATELLITES IN THE	NONGEOSTATIONARY SATELLITE ADD AN		
	SYSTEM1,	ADDITIONAL		
		*ORB FOR IT ENDING IN R01, EXAMPLE, REM05 *ORB,72.9IN03209AP00655PE013.46H01NRR01		
	ORB =	·		
For	Mean Local Time of Ascending Node	MLTAN IS THE ANGLE BETWEEN AN ORBIT'S		
SunSynchronous	(MLTAN) =23:00	ASCENDING NODE AND THE MEAN SUN, OFTEN EXPRESSED AS UNIT OF TIME (HH:MM)		
Nongeostationary		,		
Orbits				
Earth Station Data	a (Receiver) at Each Earth Station Location	on See Table Below		
State (RSC)	RSC =			
City Name (RAL)	RAL =			
Latitude	Lat =			
(DDMMSS)				
Longitude	Lon =			
(DDDMMSS)				

Receive Antenna Polarization (RAP) Receive Antenna Orientation (RAZ)	RAP =R RAZ = 5 degrees	POLARIZATIONS INCLUDE: H = HORIZONTAL, V = VERTICAL, S = HORIZONTAL AND VERTICAL, L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION THE EARTH STATION RECEIVER ANTENNA MINIMUM OPERATING ANGLE OF ELEVATION (RAZ), VOO TO V90, EXAMPLE, RAZO1 VOO
Receive Antenna Dimensions (RAD)	ANTENNA GAIN37.13, BEAMWIDTH2.56, AZIMUTHAL RANGE, THE SITE ELEVATION ABOVE MEAN SEA LEVEL IN METERS, THE ANTENNA HEIGHT ABOVE TERRAIN IN METERS, RAD =	EXAMPLE ASSUMING NONGEOSTATIONARY, 16 DBI GAIN, 30 DEGREE BEAMWIDTH, AZIMUTHAL RANGE FROM 001-360, SITE ELEVATION OF 357 METERS, AND ANTENNA HEIGHT ABOVE TERRAIN OF 6 METERS: RAD01 16G030B001-360A00357H006
Receive Antenna Additional Information (For Parabolic Antennas)	ANTENNA DIAMETER3.7 m, ANTENNA EFFICIENCY,	
Number of Satellite Contacts Supported Per Day	Normally, one per week at Svalbard If X band fails, then 14 per day at each ground station, but that would be the failsafe	NUMBER OF TIMES THE SATELLITE WILL COMMUNICATE WITH THE EARTH STATION IN THE SPACE TO EARTH DIRECTION (DOWNLINKS) EACH DAY
Expected Duration of Each Contact	Normally, less than 5 min per week	AVERAGE DURATION OF EACH CONTACT
Supported Operations	Satellite Health and Status Data ⊠ Mission Payload Data ⊠	SATELLITE HEALTH AND STATUS TELEMETRY AND/OR MISSION PAYLOAD DATA
FCC notes: 1. Use S-Note	2 S945.	

- 2. REM AGN, Cubesat, (insert name)

Part B: Ground Stations, Earth to Space link data:

Earth Station Transmitter Data (Required for Each Frequency at Each Earth Station Location)

Transmit Frequency	v: 2085 MHz	
State (XSC)	XSC =	
City Name (XAL)	XAL =	
Latitude (DDMMSS)	Lat =	
Longitude (DDDMMSS)	Lon =	
Transmit Power (PWR)	PWR = 10 W	TRANSMIT POWER SUPPLIED TO THE ANTENNA INPUT TERMINAL, EXAMPLE, PWR01 W2 TRANSMIT POWER UNITS INCLUDE: W = WATT, K = KILOWATT, M = MEGAWATT
Necessary Bandwidth	512K	THE WIDTH OF FREQUENCY BAND WHICH IS JUST SUFFICIENT TO SUCCESSFULLY TRANSFER DATA. FORMULAS CAN BE FOUND IN ANNEX J OF THE NTIA MANUAL.
RF Emissions Data	G1D	2-SIDED EMISSION BANDWIDTH VALUES
-3 dB bandwidth		
-20 dB bandwidth		
-40 dB bandwidth		
-60 dB bandwidth		
Modulation Type		THE METHOD USED TO SUPERIMPOSE DATA ON THE CARRIER, EXAMPLE, BPSK, QPSK, GMSK.
Data Rate	2256 kbps	INFORMATION DATA RATE
Forward Error	Is FEC used? Yes \square No \boxtimes	
Correction Coding	FEC Type:,	
	FEC Rate:,	
Total Symbol Rate		DATA RATE COMBINED WITH FEC AND FRAME OVERHEAD RESULTING IN THE TOTAL SYMBOL RATE AT THE INPUTE TO THE SYMBOL MAPPER/MODULATOR.
Transmit Antenna Polarization (XAP)	XAP =R	POLARIZATIONS INCLUDE: H = HORIZONTAL,
T Glarization (AAP)		V = VERTICAL, S = HORIZONTAL AND VERTICAL, L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION
Transmit Antenna Orientation (XAZ)	XAZ = 5 degrees	THE EARTH STATION TRANSMITTER ANTENNA MINIMUM OPERATING ANGLE OF ELEVATION (XAZ), V00 TO V90, EXAMPLE, XAZ01 V00

Transmit Antenna Dimensions (XAD)	ANTENNA GAIN37.13 dBi, BEAMWIDTH2.56 degrees, AZIMUTHAL RANGE, THE SITE ELEVATION ABOVE MEAN SEA LEVEL IN METERS, THE ANTENNA HEIGHT ABOVE TERRAIN IN METERS, XAD =	EXAMPLE ASSUMING NONGEOSTATIONARY, 16 DBI GAIN, 30 DEGREE BEAMWIDTH, AZIMUTHAL RANGE FROM 001-360, SITE ELEVATION OF 357 METERS, AND ANTENNA HEIGHT ABOVE TERRAIN OF 6 METERS: XAD01 16G030B001-360A00357H006
Transmit Antenna Additional Information (For Parabolic Antennas)	ANTENNA DIAMETER3.7 m, ANTENNA EFFICIENCY,	
Number of Satellite Contacts Supported Per Day		NUMBER OF TIMES THE EARTH STATION WILL COMMUNICATE WITH THE STATELLITE IN THE EARTH TO SPACE DIRECTION (UPINKS) EACH DAY
Expected Duration of Each Contact		AVERAGE DURATION OF EACH CONTACT
Satellite Receive Sp	pecifications	
Receive Antenna Polarization (RAP)	RAP = R	POLARIZATIONS INCLUDE: H = HORIZONTAL, V = VERTICAL, S = HORIZONTAL AND VERTICAL, L = LEFT HAND CIRCULAR, R = RIGHT HAND CIRCULAR, T = RIGHT AND LEFT HAND CIRCULAR, J = LINEAR POLARIZATION
Receive Antenna Orientation (RAZ)	RAZ = N	NB= NARROWBEAM EC = EARTH COVERAGE
Receive Antenna Dimension (RAD)	ANTENNA GAIN4.5 dBi, BEAMWIDTH40, RAD =	NTIA FORMAT(RAD), EXAMPLE, FOR 16 DBI ANTENNA GAIN AND 30 DEGREE BEAMWIDTH RAD01 16G030B
Type of satellite (State = SPCE) City = Geo or Nongeo	Type = nongeo	CHOOSE EITHER: GEOSTATIONARY OR NONGEOSTATIONARY
For Geostationary Satellites	Longitude =	IF ANY SATELLITES ARE GEOSTATIONARY, REPORT ITS LATITUDE AS 000000N (XLA AND/OR RLA) AND REPORT ITS LONGITUDE IN DDDMMSS FORMAT (XLG AND/OR RLG).

For Nongeostationary (Orbital Data)	INCLINATION ANGLE98, APOGEE IN KILOMETERS642, PERIGEE IN KILOMETERS642, ORBITAL PERIOD IN HOURS1AND FRACTIONS OF HOURS IN DECIMAL62, THE NUMBER OF SATELLITES IN THE SYSTEM1,	IF ANY SATELLITES ARE NONGEOSTATIONARY, REPORT ITS INCLINATION ANGLE, APOGEE IN KILOMETERS, PERIGEE IN KILOMETERS, ORBITAL PERIOD IN HOURS AND FRACTIONS OF HOURS IN DECIMAL, THE NUMBER OF SATELLITES IN THE SYSTEM, THEN T01, EXAMPLE, REMO4 *ORB,98.0IN00510AP00510PE001.58H01NRT01, AND FOR SPACE-TO-SPACE COMMUNICATIONS WITH ANOTHER NONGEOSTATIONARY SATELLITE ADD AN ADDITIONAL *ORB FOR IT ENDING IN R01, EXAMPLE, REM05 *ORB,72.9IN03209AP00655PE013.46H01NRR01
For SunSynchronous Nongeostationary Orbits	Mean Local Time of Ascending Node (MLTAN) =23:00	MLTAN IS THE ANGLE BETWEEN AN ORBIT'S ASCENDING NODE AND THE MEAN SUN, OFTEN EXPRESSED AS UNIT OF TIME (HH:MM)

Ground Station Information:

Name of station, city and	Lat (North)	Long (East)	X band	S band – expected to be in	# of X band contacts w/satellite per day,
country				use only once a	time of each
				week for 5 min	
Svalbard, Norway	78.22987	15.39744	Beamwidth = 0.69	Beamwidth = 2.73 °	Contacts = ~ 14 x / day
			0	Gain: 35.91 dBi	Duration - ~ 10 min / contact
			Gain: 47.01 dBi		
Awarua, New	-46.5015	168.38736	Beamwidth = 0.69	Beamwidth = 2.73 °	Contacts = ~ 1 x / day
Zealand			0	Gain: 35.91 dBi	Duration - ~ 10 min / contact
			Gain: 47.01 dBi		
Punta Arenas,	-53.09049	-70.92252	Beamwidth = 0.69	Beamwidth = 2.73 °	Contacts = ~ 1 x / day
Chile			0	Gain: 35.91 dBi	Duration - ~ 10 min / contact
			Gain: 47.01 dBi		
TrollSat, Queen	-71.98688	2.54823	Beamwidth = 0.69	Beamwidth = 2.73 °	Contacts = ~ 2 x / day
Maud Land,			0	Gain: 35.91 dBi	Duration - ~ 10 min / contact
Antarctica			Gain: 47.01 dBi		
Long Beach,	33.81599	-118.1855	Beamwidth = 0.69	Beamwidth = 2.73 °	Contacts = ~ 2 x / day
California USA			0	Gain: 35.91 dBi	Duration - ~ 10 min / contact
			Gain: 47.01 dBi		