EXHIBIT A

FCC FORM 442 AND SUPPORTING DOCUMENTATION FOR ALOHA NETWORKS, INC.'S REQUEST FOR SPECIAL TEMPORARY AUTHORITY

Approved by OMB 3060-0065 Ekpires 9/30/98 FEDERAL COMMUNICATIONS COMMISSION

FOR	1
FOR FCC	
USE ONLY	
ONLY	

FCC FORM 442

APPLICATION FOR NEW OR MODIFIED RADIO STATION AUTHORIZATION UNDER PART 15 OF FCC RULES - EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST)

APPLICANT NAME (Last, first, middle initial) Aloha Networks, Inc.								
	,							
MAILING ADDRESS (Line 1) (Maximum 65 characters - refer to Instruction (2) on reverse of form)								
P.O. Box 29472								
MAILING ADDRESS (Line 2) (if required) (Maximum 65 characters)								
CITY								
San Francisco		· · · · · · · · · · · · · · · · · · ·						
STATE OR COUNTRY (if foreign address) ZIP CODE CALL SIGN OR FILE NUMBER								
California 94129-0472								
Enter in Column (A) the correct Fee Type Code for the ser	• • • •							
Fee Filing Guides. Enter in Column (B) the Fee Multiple, if a the value of the Fee Type Code in Column (A) by the numb								
(A) (B)	(C)	γ, 11 BBTTγ-						
FEE MULTIPLE	FEE DUE FOR FE	ЕТУРЕ						
(1) FEE TYPE CODE (If required)	CODE IN COLU	MN W						
E A E	•							
	n you are requesting con ore than one Fee Type C	current actions which result in a ode.						
		IEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA						
(A) (B)	(C)	TOR FOC LISE ONLY						
FEE TYPE CODE FEE MULTIPLE (If required)	FEE DUE FOR FE CODE IN COLU							
	*							
(3)	ľ.							
	•							
	*							
	r							
(8)	•							
	·····							
ADD ALL AMOUNTS SHOWN IN COLUMN C, LINES (1)								
THROUGH (5), AND ENTER THE TOTAL HERE.	WITH THIS APPLI	CATION FOR FEC USE DNLT						
THROUGH (5), AND ENTER THE TOTAL HERE. THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED								
REMITTANCE.								
(4)	*							

This form has been authorized for reproduction.

APPLICATION FOR NEW OR MODIFIED RADIO STATION AUTHORIZATION UNDER PART 5 OF FCC RULES - EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST)

 Applicant's Name and Post Office address (Street address, city, state, and ZIP Code. See instruction No. 4) 	DO NOT WRITE IN THIS BLOCK File No.
Aloha Networks, Inc. P.O. Box 29472	
San Francisco, CA 94129-0472	
2(a). Application for (check only one box)	2(b). For Modification indicate below:
X New station 🔲 Modification of existing authorization	
	File No: Call Sign:
E. Application for Modification: Check the box beside all par	
E. Application for Modification: Check the box baside all par placement to indicate whether the change is an addition o	tioulars to be modified. Check either addition or re-

. Particulars of	Operation (see	instruction belo					
Frequency (state whether kHz er MHz)		POWER		EMISSION	MODULATING SIGNAL	NECESSARY BANDWIDTH	
ω	(8)	(C)	(D)	<u>(D</u>	(7)	60	
14000-14500 MHz		37.5 dBW	<u>Peak</u>	2M40G2D	OPSK	2.4 MHz	
14000-14500 MHz	2.8 dBW	40.0 dBW	Peak	2M40G2D	QPSK	2.4 MHz	
14000-14500 MHz	2.8 dBW	41.9 dBW	Peak	2M40G2D	OPSK	2.4 MHz	
14000-14500 MHz	2.8 dBW	44.3 dBW	Peak	2M40G2D	QPSK	2.4 MHz	
14000-14500 MHz	2.8 dBW	46.1 dBW	Peak	2M40G2D	OPSK	2.4 MHz	
14000-14500 MHz	2.8 dBW	56.5 dBW	Peak	2M40G2D	OPSK	2.4 MHz	
-							

(A) List each frequency or frequency band separately. (If more space is required, attach as EXHIBIT No._

(E) Insert maximum R.F. output power at the transmitter terminals. Specify units.

(() Insert maximum effective radiated power from the antenna (if pulsed emission, specify peak power). Specify units.

(D) Insert "MEAN" or "PBAK" (See definitions in Part E).

(E) List each type of emission separately for each frequency. (See Section 220) of FCC Rules.)

(f) Insert as appropriate for the type of modulation:

- (1) the maximum speed of keying in bauds;
- (2) maximum audio modulating frequency;
- (3) frequency deviation of carrier;

(4) pulse duration and repetition rate.

For complex emissions, describe in detail in the space provided below.

(3) Describe how the necessary bandwidth was determined in space provided below.

FCC Form 442 - Page 2 March 1995

)

b) 1] MXED		MOBILE				BASE AND MOB		
1210		nuy located at inty	a FIXED location, 1 City or Town				operation		the exact area of
umb	er and str	et (or other in	dication of location	ນ					
5XD.	. Enter geogra	phical coordiantan	exact to the nearest se	cond (see	Instruction	10)	B(a)(12nter geograp center of mobile a	**	rdinates of the approximate new instruction 103
	atitude CD-I	AM-\$5)	West Longitude CD-		-		North Latitude		West Langtude
	CONUS	•	CON	US					•
1). I	Datum (see	instruction 10):			NAD 27	X	NAD 66		
		al antenna (ot) the following	her than radar) use information:	d" [X]	y e s		No		
(a)	Width of	beam in degree	s at the half-powe	r point	_See	Exhi	bit_A		
(D)	Orientatio	n in norizonuli	plane		(0) C	719119	uon in varuosi	piane	
		ization to be u Government?	ed for fulfilling t	_		-		not wit	h an agency of the
			No						ent m aleat
		ontaot number							
is t by	this author stations u	ization to be under the jurisd	ed for the exclusi- iction of a foreign	sovern	one of de	_		ent for	export to be employ
10.1			ia		YES				
			ment concerned.		wing 10	- 41 116 1	NOIL PTOVICE LIE	Contrat	r Burrder Bau (ne
is i	this author ion is not	ization to be u the objective o	ed for providing of the research pro	jeci),	ications (i and a state of the state of t	ial to a research	project	? (The radio commun
			ła 1	narrati	ve state	ment ;	provding the fol	iowing	information:
(b)	A showin	that the com	ire of the research nunications faciliti communications fi	es requ	ested are	Deces	mary for the res	earch p	roject involved.
. 1f (all the ans detail the	wers to Items 7 following:	, 8, and 9, are "NO",	atiach s	e Exhibi	T No.	G •	DATTAL	ive statement describ
in	The compl		research and sxp	eriment	ation pro	posed	including descri	iption e	f equipment
in			ought to be accomp erimentation has a		ble pror	nime of	f contribution to	the de	velopment, extension,
in (a) (b) (d)	ATTANSION		of the radio art, or			_			-
in (a) (b) (d)			neth of time that '	W111 D0 1	DerLiper	10 003	ipiete the progra	. <u>m</u> . of e: ·	xperimentation propo
in (a) (b) (a) (a) (b) (a)	ive an est n this appl	lostion:	onths						
in (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	ive an est n this appl f less than vill be requ	iostion: <u>6</u> r 2 years, give t aired:	he length of time :	in mont					
in (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	ive an est n this appl f less than vill be requ Would a Co	ication: <u>6</u> 2 years, give t nired: mmission gran	he length of time :	in mont	within S			Rules,	
in (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Five an est in this appl f less than will be requ Would a Co ignificant	lostion: <u>6</u> 2 years, give t ilred: mmission gran- environmental	he length of time :	in mont	within St	etion	11807 of the PCC	Rules, NO	such that it may have
in (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Five an est in this appl f less than will be requ Would a Co ignificant f TES, att	ication: <u>6</u> r 2 years give t ilred: mmission gran environmental ach as EXHIBIT transmitting eq	he length of time : l of this application impact (see instru	in mont	within Se 7 Environs	ental,	11807 of the PCC YES Assessment as r so state):	Rules, NO	such that it may have

. •

.

FCC Form 442 - Page 3 March 1995

3.						ion identificatio				_ YES	
	more than	6 meters				ove the ground, he proposed and					
	than a bui	ding?			· [] 725	D NO				
	if "YES", gi (a) Overall					a le	meteri	L			
	(b) Elevatio	n of grou	nd at an	itenna site	above me	ean sea level is		meter	e.		
	(c) Distano	to neare	ri aircra	ft landing	area is _					_ kilome	a La
	the opt	ulon of th	applice		tend to sh	made structures hield the anten:					
	if any,	giving he	ghts in	meters abo	ve groun	al profile sketo d for all signifi hting already a	cant featu	structure i res. Clearly	noluding s 7 indicate	npporti: existing	۲ų
13.	Applicant	E /Check	enly ene	bezi			<u></u>				
					F	7					
	עומאו ו	IDUAL		OCIATION	L	PARTNERSH	ш ^а — В	CORPOR	ATION		
	D OTHER	(describe	in space	e provided	below)						
12,	application	for perm ach as EX	it, licens HIBIT N	e or renev	val denied	d any FCC stati l by this Commi- tatement giving	intion?	-	0	YES	
] YES	
1-	117(1)										
15.	Will applie					application.	Internet e	-mali addr	nn (n. sbb	ikadie)	1
	Give name		inquirie	-	-						
\$X).	Give name who can b	est handle			TION:						_
	Give name who can b APPLICANT By checkin he or she i conviction eg. corport	ANTI-DRU g YES, 11 s not subje pursuant stion, part: a denial of	G ABUS in indivi int is a to Sectio nership	dual applie denial of f n 580i of t or other u	cant certif 'ederal bei the Anti- : nincorport	fiss that he or a nefits, including Drug Abuse Act association to that section.	FCC ben of 1988, 2 ourtifies	flis, as a r USC, 862 that no pas	a non-in ty to the	drug of: dividual applicat these pr	์ร เ เม
5 x). 5p.	Give name who can b APPLICANT By checkin he or she i conviction eg. corport subject to see 47 CFR	ANTI-DRL g YES, ti s not subj pursuant tion, part: a denial of 12002(b).	G ABUS le indivi lot io a (lo Sectio hership federal	dual applic denial of f n 560: of t or other u: benefits,	cant certif Tederal ben the Anti- nincorport pursuant	nefits, including Drug Abuse Act ated association	FCC bend of 1988, 2 , certifies For definit	flis, as a r USC, 862 that no pai tion of a "p	esult of a A non- in rty to the arty for	drug of dividual applicat these pr	ר ו ש
51). 51).	Give name who can b APPLICANT By checkin he or she i conviction eg. corport subject to see 47 CFR	ANTI-DRL g YES, ti s not subj pursuant tion, part: a denial of 12002(b).	G ABUS le indivi lot to so to Sectio nership federal s in nur	dual applic denial of f n 560% of t or other us benefits, merical seq	cant certif Tederal ben the Anti- nincorport pursuant	nefits, including Drug Abuse Act ated association to that section.	FCC ben of 1988, 2 , certifies For defini ber of for	flis, as a r USC, 862 that no pai tion of a "p	A non- in rty to the arty for the exhi	drug of dividual applicat these pr	
58). 50. 522	Give name who can b APPLICANT By checkin he or she i conviction eg. corport subject to see 47 CFR List below	ANTI-DRL g YES. II s not subje pursuant iion, part: a denial of 12002(b). all exhibit 117M NO. 9 Anteni	G ABUS in indivi- int to a c to Section aership federal s in num form ha Pa	dual applic denial of f n 560i of t or other u benefits, merical seq possi ramete:	tent certif ederal ber the Anti- nincorport pursuant usence an usen t s	nefits, including Drug Abuse Act also association to that section. d the item num mBM NO. OF F	FCC ben of 1988, 2 , certifies For defini ber of for	sflig, as a r i U.S.C. 862. that no pai tion of a "p m requiring	A non- in rty to the arty for the exhi	drug of: dividual applicat these pr yES bit iden	
51). 51).	Give name who can b APPLICANT By checkin he or she i conviction e.g. corport subject to see 47 CFR List below relit NAMER	ANTI-DRU g YES. II not subje pursuant iion, part: a denial of 12002(b). all exhibit IIDM NO. 9 Anteni Radiat	G ABUS le indivi- lot to a c to Sectionership federal s in num form ha Pa ion	dual applic denial of f n 660 of t or other u benefits, nerical seq pass: ramete: Hazard	numera nu	nefits, including Drug Abuse Act also association to that section. d the item num mB4 NO. OF P	FCC ben of 1998, 2 , ourlifies For definition ber of for	sflig, as a r i U.S.C. 862. that no pai tion of a "p m requiring	A non- in rty to the arty for the exhi	drug of: dividual applicat these pr yES bit iden	
(H). (D). (22	Give name who can b APPLICANT By checkin he or she i conviction e.g. corport subject to mee 47 CFR List below estit NAMER A B C	ANTI-DRU g YES, th not subje pursuant tion, part: denial of 12002(b). all exhibit IIBM NO. 0 Anteni Radia: Demon.	G ABUS ine indivi- int to a to to Section in number federal form in number form na Pa ion	dual applic ienial of f n 560 of t or other u benefits, possif rameter Hazard ion of	numera numera numera numera numera numera numera rs study FCC C	nefits, including Drug Abuse Act ated association to that section. d the item num mbs NO. OF F	FCC ben of 1998, 2 , ourlifies For definition ber of for	sflig, as a r i U.S.C. 862. that no pai tion of a "p m requiring	A non- in rty to the arty for the exhi	drug of: dividual applicat these pr yES bit iden	
(H). (D). (22	Give name who can b APPLICANT By checkin he or she i conviction e.g. ourport subject to subject to see 47 CFR List below RBIT NAMER A B C D	ANTI-DRU g YES. II not subje pursuant tion, part: denial of 12002(b). all exhibit IIBM NO. 9 Anteni Radia: Demon. Adjac.	G ABUS ine individual int io a io Section in num form in num form in num form na Pa ion atrat atrat	dual applic ienial of f n 560 of t or other u benefits, possif rameter Hazard ion of atelli	numera numera numera numera numera numera numera rs Study FCC C te Ana	nefits, including Drug Abuse Act ated association to that section. d the item num mbs NO. OF F	FCC ben of 1998, 2 , ourlifies For definition ber of for	sflig, as a r i U.S.C. 862. that no pai tion of a "p m requiring	A non- in rty to the arty for the exhi	drug of: dividual applicat these pr yES bit iden	
(#). (D.	Give name who can b APPLICANT By checkin he or she i conviction e.g. corport subject to mee 47 CFR List below estit NAMER A B C	ANTI-DRU g YES, th not subje pursuant tion, part: a denial of 12002(b). all exhibit ITPM NO. 9 Antenia Radia: Demonia Adjac: Antenia	G ABUS ie individue iot to a c to Section iership federal s in num form in num form in num to na Pa ion a Pa in na Pa in na Pa	dual applic denial of f n 560 of t or other u. benefits merical seq possi rametei Hazard ion of atellit	tent certif ederal ber the Anti- nincorport pursuant usence an usen Study FCC C te Ana	nefits, including Drug Abuse Act ated association to that section. d the item num mBM NO. OF F ompliance lysis	FCC ben of 1998, 2 , carlifies For definition ber of for	sflig, as a r i U.S.C. 862. that no pai tion of a "p m requiring	A non- in rty to the arty for the exhi	drug of: dividual applicat these pr yES bit iden	
(#). (D.	Give name who can b APPLICANT By checkin he or she i conviction subject to subject to see 47 CFR List below HBIT NUMBER A B C D E	ANTI-DRU g YES. II not subje pursuant iion, part: a denial of 12002(b). all exhibit IIM NO. 9 Anteni Radia: Demon. Adjac. Anteni Acknov	G ABUS in individual in in in in individual in in individual in in individual in in individual in in individual in in individual in in in in individual in in in individual in in in individual in in in individual in i	dual applic denial of f n 660 of t or other u benefits merical seq from f hazard ion of atelli tterns ement	Numeral certification of the second certification of the s	nefits, including Drug Abuse Act ated association to that section. d the item num mbs NO. OF F	FCC ben of 1998, 2 , certifies For definition ber of for	sflig, as a r i U.S.C. 862. that no pai tion of a "p m requiring	eruit of a A non-in A non-in rty to the arty for [] ; the exhi mers	drug of: dividual applicat these pr yES bit iden	

.

23 CERTFICATION:

Attention: Read this certification carefully before signing this application.

THE APPLICANT CERTIFIES THAT:

- (a) Copies of FCC Rule Parts 2 and 5 are on hand; and
- (b) Adequate financial appropriations have been made to carry on the program of experimentation which will be conducted by qualified personnel; and
- (c) All operations will be on an experimental basis in accordance with Part 5 and other applicable rules, and will be conducted in such a manner and at such a time as to preclude harmful interference to any authorized station; and
- (d) Grant of the authorization requested herein will not be construed as a finding on the part of the Commission:
 - (i) that the frequencies and other technical parameters specified in the authorization are the best suited for the proposed program of experimentation, and
 - (2) that the applicant will be authorized to operate on any basis other than experimental, and
 - (8) that the Commission is obligated by the results of the experimental program to make provision in its rules including its table of frequency allocations for applicant's type of operation on a regularly licensed bisis.

APPLICANT CERTIFIES FURTHER THAT:

- (e) All the statements in the application and attached exhibits are true, complete and correct to the best of the applicant's knowledge; and
- (f) The applicant is willing to finance and conduct the experimental program with full knowledge and understanding of the above limitations; and
- (g) The applicant waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the USA.

Signed and dated this		day of	, 19		
Name of Applicant	=				
		laust correspond with none given on page 1)			
Ву					
lpr	inti	(signatura)			
Title					
Check appropriate classifica	tion:				
Individual applicant		Member of applicant partnership			
Authorized employee		Office of applicant corporation or association			

HILLFUL FALSE STATEMENTS MADE ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. Code, This III Section 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION PERMIT (U.S. Code, This 47, Section \$12(a)(1), AND/OR FORFEITURE (U.S. Code, This 47, Section 503).

> NOTIFICATION TO INDIVIDUALS UNDER PRIVACY ACT OF 1974 AND THE PAPERWORK REDUCTION ACT OF 1990

Information requested through this form is authorized by the Communications Act of 1984, as amended, and specified by Section 808 therein. The information will be used by Federal Communications Commission staff to determine digibility for issuing authorizations in the use of the frequency spectrum and to effect the provisions of regulatory susponsibilities rendered by the Commission by the Act. Information requested by this form will be available to the public unless otherwise requested pursuant to 47 CFR 0.459 of the FCC Rules and Regulations. Your response is required to obtain this authorization.

Public reporting burden for this collection of information is estimated to average four (4) hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3050-0055), Washington, DC 20554. DO NOT send completed applications to this underess, individuals are not required to respond to this collection unless it displays a currently valid OMB control number.

"HE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, PL. 98-579, DECEMBER 61, 1974, 5 U.S.C. 5528(4)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, PL. 98-511, DECEMBER 11, 1980, 44 U.S.C. 6507.

Exhibit A

Summary of Transmit Antenna Parameters

1. Channel Master - 0.45 m Ku-Band Antenna

Operating Frequency (Tx)	13.75 – 14.50 GHz
Polarizations:	Linear
3 dB Beamwidth (Tx)	3.0° @ 14.3 GHz
Modulation	Digital, 2.4 MHz
Gain (Tx)	34.7 dBi
RF power into Antenna Flange:	1.91 Watts or -25 dBW/4 kHz
Antenna Uplink EIRP	37.5 dBW or 9.7 dBW/4 kHz

2. Channel Master - 0.60 m Ku-Band Antenna

Operating Frequency (Tx):	13.75 – 14.50 GHz
Polarizations:	Linear
3 dB Beamwidth (Tx)	2.4° @ 14.3 GHz
Modulation	Digital, 2.4 MHz
Gain (Tx):	37.2 dBi
RF power into Antenna Flange:	1.91 Watts or -25 dBW/4 kHz
Antenna Uplink EIRP:	40.0 dBW or 12.2 dBW/4 kHz

3. Channel Master - 0.75 m Ku-Band Antenna

Operating Frequency (Tx):	13.75 – 14.50 GHz
Polarizations:	Linear
3 dB Beamwidth (Tx)	1.9° @ 14.3 GHz
Modulation	Digital, 2.4 MHz
Gain (Tx):	39.1 dBi
RF power into Antenna Flange:	1.91 Watts or -25 dBW/4 kHz
Antenna Uplink EIRP:	41.9 dBW or 14.1 dBW/4 kHz

4. Channel Master - 1.0 m Ku-Band Antenna

Operating Frequency (Tx):	13.75 – 14.50 GHz
Polarizations:	Linear
3 dB Beamwidth (Tx)	1.5° @ 14.3 GHz
Modulation	Digital, 2.4 MHz
Gain (Tx):	41.5 dBi
RF power into Antenna Flange:	1.91 Watts or -25 dBW/4 kHz
Antenna Uplink EIRP:	44.3 dBW or 16.5 dBW/4 kHz

5. Channel Master - 1.2 m Ku-Band Antenna

Operating Frequency (Tx):	13.75 – 14.50 GHz
Polarizations:	Linear
3 dB Beamwidth (Tx)	1.2° @ 14.3 GHz
Modulation	Digital, 2.4 MHz
Gain (Tx):	43.3 dBi
RF power into Antenna Flange:	1.91 Watts or -25 dBW/4 kHz
Antenna Uplink EIRP:	46.1 dBW or 18.3 dBW/4 kHz

٠

6. TBD – 4.5 m Ku-Band Antenna

Operating Frequency (Tx):	13.75 – 14.50 GHz
Polarizations:	Linear
3 dB Beamwidth (Tx)	0.35 ⁰ @ 14.3 GHz
Modulation	Digital, 2.4 MHz
Gain (Tx):	53.7 dBi
RF power into Antenna Flange:	1.91 Watts or -25 dBW/4 kHz
Antenna Uplink EIRP:	56.5 dBW or 28.7 dBW/4 kHz

Aloha Networks, Inc. FCC Form 442-Filing Document

Exhibit B

Radiation Hazard Analyses (4.5m, 1.2m, 1.0m, 0.75m, 0.60m, & 0.45m)

Analysis of Non-Ionizing Radiation for a 4.5 Meter Earth Station System

This report analyzes the non-ionizing radiation levels for a 4.5 meter earth station system. The analysis and calculations performed in this report are in compliance with the methods described in the FCC Office of Engineering and Technology Bulletin, No. 65 first published in 1985 and revised in 1997 in Edition 97-01. The radiation safety limits used in the analysis are in conformance with the FCC R&O 96-326. Bulletin No. 65 and the FCC R&O specifies that there are two separate tiers of exposure limits that are dependant on the situation in which the exposure takes place and/or the status of the individuals who are subject to the exposure. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/ Uncontrolled environment are shown in Table 1. The General Population/ Uncontrolled MPE is a function of transmit frequency and is for an exposure period of thirty minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2. The Occupational MPE is a function of transmit frequency and is for an exposure period of six minutes or less. The purpose of the analysis described in this report is to determine the power flux density levels of the earth station in the far-field, near-field, transition region, between the subreflector or feed and main reflector surface, at the main reflector surface, and between the antenna edge and the ground and to compare these levels to the specified MPEs.

Table 1. Limits for General Population/Uncontrolled Exposure(MPE)

Frequency Range (MHz)	Power Density (mWatts/cm**2)
30-300 300-1500	0.2 Frequency(MHz)*(0.8/1200)
1500-100,000	1.0

Table 2. Limits for Occupational/Controlled Exposure(MPE)

Frequency Range	(MHz)	Power Density (mWatts/cm**2)
30-300 300-1500 1500-100,000)	1.0 Frequency(MHz)*(4.0/1200) 5.0

Table 3 contains the parameters that are used to calculate the various power densities for the earth stations.

EXHIBIT B Page 2 of 5

Table 3. Formulas and Parameters Used for Determining Power Flux Densities

Parameter	Abbreviation	Value	Units
Antenna Diameter	D	4.5	meters
Antenna Surface Area	Sa	II * D**2/4	meters**2
Subreflector Diameter	Ds	61.0	Cm
Area of Subreflector	As	II * Ds**2/4	cm**2
Frequency	Frequency	14250	MHz
Wavelength	lambda	300/frequency(MHz)	meters
Transmit Power	Р	1.91	Watts
Antenna Gain	Ges	53.7	dBi
Pi	II	3.1415927	n/a
Antenna Efficiency	n	0.55	n/a

1. Far Field Distance Calculation

The distance to the beginning of the far field can be determined from the following equation: (1)

Distance to the Far Field Region, (Rf) = 0.60 * D**2 / lambda (1) = 577.1 meters

The maximum main beam power density in the Far Field can be determined from the following equation: (2)

```
On-Axis Power Density in the Far Field, (Wf) = Ges * P / 4 * II * Rf**2 (2)
= 0.107 Watts/meters**2
= 0.011 mWatts/cm**2
```

2. Near Field Calculation

Power flux density is considered to be at a maximum value throughout the entire length of the defined Near Field region. The region is contained within a cylindrical volume having the same diameter as the antenna. Past the boundary of the Near Field region the power density from the antenna decreases linearly with respect to increasing distance.

The distance to the end of the Near Field can be determined from the following equation: (3)

```
Extent of the Near Field, (Rn) = D^{*}2 / (4 * lambda) (3)
= 240.5 meters
```

The maximum power density in the Near Field can be determined from the following equation: (4) $% \left(4\right) =0$

```
Near Field Power Density, (Wn) = 16.0 * n * P / II * D**2 (4)
= 0.264 Watts/meters**2
= 0.026 mWatts/cm**2
```

EXHIBIT B Page 3 of 5

3. Transition Region Calculations

The Transition region is located between the Near and Far Field regions. The power density begins to decrease linearly with increasing distance in the Transition region. While the power density decreases inversely with distance in the Transition region, the power density decreases inversely with the square of the distance in the Far Field region. The maximum power density in the Transition region will not exceed that calculated for the Near Field region. The power density calculated in Section 1 is the highest power density the antenna can produce in any of the regions away from the antenna. The power density at a distance Rt can be determined from the following equation: (5)

Transition region Power Density, (Tt) = Wn * Rn / Rt (5) = 0.026 mWatts/cm**2

4. Region between Main Reflector and Subreflector

Transmissions from the feed assembly are directed toward the subreflector surface, and are reflected back toward the main reflector. The most common feed assemblies are waveguide flanges, horns or subreflectors. The energy between the subreflector and the reflector surfaces can be calculated by determining the power density at the subreflector surface. This can be determined from the following equation: (6)

Power Density at Feed Flange,
$$(Ws) = 4 * P / As$$
 (6)
= 2.614 mWatts/cm**2

5. Main Reflector Region

The power density in the main reflector is determined in the same manner as the power density at the subreflector. The area is now the area of the main reflector aperture and can be determined from the following equation: (7)

```
Power Density at the Main Reflector Surface, (Wm) = 4 * P / Sa (7)
= 0.480 Watts/meters**2
= 0.048 mWatts/cm**2
```

6. Region between Main Reflector and Ground

Assuming uniform illumination of the reflector surface, the power density between the antenna and ground can be determined from the following equation: (8)

```
Power Density between Reflector and Ground,(Wg) = P / Sa (8)
= 0.120 Watts/meters**2
= 0.012 mWatts/cm**2
```

Table 4. Summary of Expected Radiation levels for Uncontrolled Environment

Region	Calculated Maximum Radiatic Power Density Level (mWatts/cm**2)	n Hazard Assessment
1. Far Field (Rf) = 577.1	meters 0.011	Satisfies FCC MPE
2. Near Field (Rn) = 240.5	meters 0.026	Satisfies FCC MPE
3. Transition Region Rn < Rt < Rf, (Rt)	0.026	Satisfies FCC MPE
4. Between Main Reflector and Subreflector	2.614	Potential Hazard
5. Main Reflector	0.048	Satisfies FCC MPE
6. Between Main Reflector and Ground	0.012	Satisfies FCC MPE

Table 5. Summary of Expected Radiation levels for Controlled Environment

Region	Calculated Maximum Radiatic Power Density Level (mWatts/cm**2)	
1. Far Field (Rf) = 577.1 m	eters 0.011	Satisfies FCC MPE
2. Near Field (Rn) = 240.5 m	eters 0.026	Satisfies FCC MPE
3. Transition Region Rn < Rt < Rf, (Rt)	0.026	Satisfies FCC MPE
4. Between Main Reflector and Subreflector	2.614	Satisfies FCC MPE
5. Main Reflector	0.048	Satisfies FCC MPE
6. Between Main Reflector and Ground	0.012	Satisfies FCC MPE

It is the	applicant's	respo	nsibility	to	ensure	that	the	public and
operational	personnel a	are no	exposed	to	harmful	leve	ls of	radiation.

EXHIBIT B Page 5 of 5

7. Conclusions

Based on the above analysis it is concluded that harmful levels of radiation will not exist in regions normally occupied by the public or the earth station's operating personnel. The transmitter will be turned off during antenna maintenance so that the FCC MPE of 5.0 mW/cm**2 will be complied with for those regions with close proximity to the reflector that exceed acceptable levels.

Analysis of Non-Ionizing Radiation for a 0.45 Meter Earth Station System

This report analyzes the non-ionizing radiation levels for a 0.45 meter earth station system. The analysis and calculations performed in this report are in compliance with the methods described in the FCC Office of Engineering and Technology Bulletin, No. 65 first published in 1985 and revised in 1997 in Edition 97-01. The radiation safety limits used in the analysis are in conformance with the FCC R&O 96-326. Bulletin No. 65 and the FCC R&O specifies that there are two separate tiers of exposure limits that are dependant on the situation in which the exposure takes place and/or the status of the individuals who are subject to the exposure. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/ Uncontrolled environment are shown in Table 1. The General Population/ Uncontrolled MPE is a function of transmit frequency and is for an exposure period of thirty minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2. The Occupational MPE is a function of transmit frequency and is for an exposure period of thirty minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2. The Occupational MPE is a function of transmit frequency and is for an exposure period of six minutes or less. The purpose of the analysis described in this report is to determine the power flux density levels of the earth station in the far-field, near-field, transition region, between the subreflector or feed and main reflector surface, at the main reflector surface, and between the antenna edge and the ground and to compare these levels to the specified MPEs.

Table 1. Limits for General Po	opulation/Uncontrolled Exposure(MPE)
Frequency Range (MHz)	Power Density (mWatts/cm**2)
30-300 300-1500 1500-100,000	0.2 Frequency(MHz)*(0.8/1200) 1.0
Table 2. Limits for Occupation	nal/Controlled Exposure(MPE)
Frequency Range (MHz)	Power Density (mWatts/cm**2)

30-300	1.0
300-1500	Frequency(MHz)*(4.0/1200)
1500-100,000	5.0

Table 3 contains the parameters that are used to calculate the various power densities for the earth stations.

EXHIBIT B Page 2 of 5

Table 3. Formulas and Parameters Used for Determining Power Flux Densities

Parameter	Abbreviation	Value	Units
Antenna Diameter	D	0.45	meters
Antenna Surface Area	Sa	II * D**2/4	meters**2
Feed Flange Diameter	Df	7.6	Cm
Area of Feed Flange	Fa	II * Df**2/4	cm**2
Frequency	Frequency	14250	MHz
Wavelength	lambda	300/frequency(MHz)	meters
Transmit Power	P	1.91	Watts
Antenna Gain	Ges	34.7	dBi
Pi	II	3.1415927	n/a
Antenna Efficiency	n	0.65	n/a

1. Far Field Distance Calculation

The distance to the beginning of the far field can be determined from the following equation: (1)

Distance to the Far Field Region, (Rf) = 0.60 * D**2 / lambda (1) = 5.8 meters

The maximum main beam power density in the Far Field can be determined from the following equation: (2)

```
On-Axis Power Density in the Far Field, (Wf) = Ges * P / 4 * II * Rf**2 (2)
= 13.467 Watts/meters**2
= 1.347 mWatts/cm**2
```

2. Near Field Calculation

Power flux density is considered to be at a maximum value throughout the entire length of the defined Near Field region. The region is contained within a cylindrical volume having the same diameter as the antenna. Past the boundary of the Near Field region the power density from the antenna decreases linearly with respect to increasing distance.

The distance to the end of the Near Field can be determined from the following equation:(3)

```
Extent of the Near Field, (Rn) = D^{*}2 / (4 * lambda) (3)
= 2.4 meters
```

The maximum power density in the Near Field can be determined from the following equation: $\left(4\right)$

```
Near Field Power Density, (Wn) = 16.0 * n * P / II * D**2 (4)
= 31.439 Watts/meters**2
= 3.144 mWatts/cm**2
```

EXHIBIT B Page 3 of 5

3. Transition Region Calculations

The Transition region is located between the Near and Far Field regions. The power density begins to decrease linearly with increasing distance in the Transition region. While the power density decreases inversely with distance in the Transition region, the power density decreases inversely with the square of the distance in the Far Field region. The maximum power density in the Transition region will not exceed that calculated for the Near Field region. The power density calculated in Section 1 is the highest power density the antenna can produce in any of the regions away from the antenna. The power density at a distance Rt can be determined from the following equation: (5)

Transition region Power Density, (Tt) = Wn * Rn / Rt (5) = 3.144 mWatts/cm**2

4. Region between Feed Assembly and Antenna Reflector

Transmissions from the feed assembly are directed toward the antenna reflector surface, and are confined within a conical shape defined by the type of feed assembly. The most common feed assemblies are waveguide flanges, horns or subreflectors. The energy between the feed assembly and reflector surface can be calculated by determining the power density at the feed assembly surface. This can be determined from the following equation: (6)

Power Density at Feed Flange, (Wf) = 4 * P / Fa (6) = 168.413 mWatts/cm**2

5. Main Reflector Region

The power density in the main reflector is determined in the same manner as the power density at the feed assembly. The area is now the area of the reflector aperture and can be determined from the following equation: (7)

```
Power Density at the Reflector Surface, (Ws) = 4 * P / Sa (7)
= 48.037 Watts/meters**2
= 4.804 mWatts/cm**2
```

6. Region between Reflector and Ground

Assuming uniform illumination of the reflector surface, the power density between the antenna and ground can be determined from the following equation: (8)

Power Density between Reflector and Ground, (Wg) = P / Sa (8) = 12.009 Watts/meters**2 = 1.201 mWatts/cm**2 Table 4. Summary of Expected Radiation levels for Uncontrolled Environment

Region	Calculated Maximum Radiatic Power Density Level (mWatts/cm**2)	
1. Far Field (Rf) = 5.8 mete	ers 1.347	Potential Hazard
2. Near Field (Rn) = 2.4 mete	ers 3.144	Potential Hazard
3. Transition Region Rn < Rt < Rf, (Rt)	3.144	Potential Hazard
 Between Feed Assembly and Antenna Reflector 	168.413	Potential Hazard
5. Main Reflector	4.804	Potential Hazard
6. Between Reflector and Ground	1.201	Potential Hazard

Table 5. Summary of Expected Radiation levels for Controlled Environment

Region	Calculated Maximum Radiatic Power Density Level (mWatts/cm**2)	
1. Far Field (Rf) = 5.8 mete	rs 1.347	Satisfies FCC MPE
2. Near Field (Rn) = 2.4 mete	rs 3.144	Satisfies FCC MPE
3. Transition Region Rn < Rt < Rf, (Rt)	3.144	Satisfies FCC MPE
4. Between Feed Assembly and Antenna Reflector	168.413	Potential Hazard
5. Main Reflector	4.804	Satisfies FCC MPE
6. Between Reflector and Ground	1.201	Satisfies FCC MPE

It is the	applicant's	s re	sponsibility	to	ensure	that	the	public and
operational	personnel	are	not exposed	to	harmful	leve	ls of	radiation.

EXHIBIT B Page 5 of 5

7. <u>Conclusions</u>

Based on the above analysis it is concluded that the FCC MPE guidelines have been exceeded (or met) in the regions of Table 4. and 5. The applicant proposes to comply with the MPE limits by one or more of the following methods.

The proposed earth station will be installed at the Aloha Networks facility. The antenna facility should be surrounded by a fence, which will restrict any public access to the site. The earth station will be marked with the standard radiation hazard warnings, as well as the area in the vicinity of the earth stations to inform those in the general population, who may be working or otherwise present in or near the direct path of the main beams.

Aloha Networks, Inc. will ensure that the main beam of the antenna will be pointed at least one diameter away from any buildings, or other obstacles in those areas that exceeds the MPE levels.

Finally, the earth station operating personnel will not have excess to areas that exceed the MPE levels, while the earth station is in operation. The transmitter will be turned off during periods of maintenance, so that the MPE standard of 5.0 mW/cm**2 will be complied with for those regions in close proximity to the reflector, and normally occupied by operating personnel.

Analysis of Non-Ionizing Radiation for a 0.6 Meter Earth Station System

This report analyzes the non-ionizing radiation levels for a 0.6 meter earth station system. The analysis and calculations performed in this report are in compliance with the methods described in the FCC Office of Engineering and Technology Bulletin, No. 65 first published in 1985 and revised in 1997 in Edition 97-01. The radiation safety limits used in the analysis are in conformance with the FCC R&O 96-326. Bulletin No. 65 and the FCC R&O specifies that there are two separate tiers of exposure limits that are dependant on the situation in which the exposure takes place and/or the status of the individuals who are subject to the exposure. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/ Uncontrolled environment are shown in Table 1. The General Population/ Uncontrolled MPE is a function of transmit frequency and is for an exposure period of thirty minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2. The Occupational MPE is a function of transmit frequency and is for an exposure period of thirty minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2. The Occupational MPE is a function of transmit frequency and is for an exposure period of six minutes or less. The purpose of the analysis described in this report is to determine the power flux density levels of the earth station in the far-field, near-field, transition region, between the subreflector or feed and main reflector surface, at the main reflector surface, and between the antenna edge and the ground and to compare these levels to the specified MPEs.

Table 1. Limits for General Po	opulation/Uncontrolled Exposure(MPE)
Frequency Range (MHz)	Power Density (mWatts/cm**2)
30-300 300-1500 1500-100,000	0.2 Frequency(MHz)*(0.8/1200) 1.0
Table 2. Limits for Occupation	nal/Controlled Exposure(MPE)
Frequency Range (MHz)	Power Density (mWatts/cm**2)
30-300 300-1500	1.0 Frequency(MHz)*(4.0/1200)

1500-100,000

Table 3 contains the parameters that are used to calculate the various power densities for the earth stations.

5.0

EXHIBIT B Page 2 of 5

Table 3. Formulas and Parameters Used for Determining Power Flux Densities

Parameter	Abbreviation	Value	Units
Antenna Diameter	D	0.6	meters
Antenna Surface Area	Sa	II * D**2/4	meters**2
Feed Flange Diameter	Df	7.6	CM
Area of Feed Flange	Fa	II * Df**2/4	cm**2
Frequency	Frequency	14250	MHz
Wavelength	lambda	300/frequency(MHz)	meters
Transmit Power	P	1.91	Watts
Antenna Gain	Ges	37.2	dBi
Pi	II	3.1415927	n/a
Antenna Efficiency	n	0.65	n/a

1. Far Field Distance Calculation

The distance to the beginning of the far field can be determined from the following equation: (1)

```
Distance to the Far Field Region, (Rf) = 0.60 * D**2 / lambda (1)
= 10.3 meters
```

The maximum main beam power density in the Far Field can be determined from the following equation: (2)

```
On-Axis Power Density in the Far Field, (Wf) = Ges * P / 4 * II * Rf**2 (2)
= 7.578 Watts/meters**2
= 0.758 mWatts/cm**2
```

2. Near Field Calculation

Power flux density is considered to be at a maximum value throughout the entire length of the defined Near Field region. The region is contained within a cylindrical volume having the same diameter as the antenna. Past the boundary of the Near Field region the power density from the antenna decreases linearly with respect to increasing distance.

The distance to the end of the Near Field can be determined from the following equation:(3)

```
Extent of the Near Field, (Rn) = D^{*2} / (4 * lambda) (3)
= 4.3 meters
```

The maximum power density in the Near Field can be determined from the following equation: (4)

```
Near Field Power Density, (Wn) = 16.0 * n * P / II * D**2 (4)
= 17.689 Watts/meters**2
= 1.769 mWatts/cm**2
```

EXHIBIT B Page 3 of 5

3. Transition Region Calculations

The Transition region is located between the Near and Far Field regions. The power density begins to decrease linearly with increasing distance in the Transition region. While the power density decreases inversely with distance in the Transition region, the power density decreases inversely with the square of the distance in the Far Field region. The maximum power density in the Transition region will not exceed that calculated for the Near Field region. The power density calculated in Section 1 is the highest power density the antenna can produce in any of the regions away from the antenna. The power density at a distance Rt can be determined from the following equation: (5)

Transition region Power Density, (Tt) = Wn * Rn / Rt (5) = 1.769 mWatts/cm**2

4. Region between Feed Assembly and Antenna Reflector

Transmissions from the feed assembly are directed toward the antenna reflector surface, and are confined within a conical shape defined by the type of feed assembly. The most common feed assemblies are waveguide flanges, horns or subreflectors. The energy between the feed assembly and reflector surface can be calculated by determining the power density at the feed assembly surface. This can be determined from the following equation: (6)

Power Density at Feed Flange, (Wf) = 4 * P / Fa (6) = 168.413 mWatts/cm**2

5. Main Reflector Region

The power density in the main reflector is determined in the same manner as the power density at the feed assembly. The area is now the area of the reflector aperture and can be determined from the following equation: (7)

```
Power Density at the Reflector Surface, (Ws) = 4 * P / Sa (7)
= 27.021 Watts/meters**2
= 2.702 mWatts/cm**2
```

6. Region between Reflector and Ground

Assuming uniform illumination of the reflector surface, the power density between the antenna and ground can be determined from the following equation: (8)

```
Power Density between Reflector and Ground, (Wg) = P / Sa (8)
= 6.755 Watts/meters**2
= 0.676 mWatts/cm**2
```

Table 4. Summary of Expected Radiation levels for Uncontrolled Environment

Region	Calculated Maximum Radiatic Power Density Level (mWatts/cm**2)	n Hazard Assessment
1. Far Field (Rf) = 10.3 met	cers 0.758	Satisfies FCC MPE
2. Near Field (Rn) = 4.3 mete	ers 1.769	Potential Hazard
3. Transition Region Rn < Rt < Rf, (Rt)	1.769	Potential Hazard
4. Between Feed Assembly and Antenna Reflector	168.413	Potential Hazard
5. Main Reflector	2.702	Potential Hazard
6. Between Reflector and Ground	0.676	Satisfies FCC MPE

Table 5. Summary of Expected Radiation levels for Controlled Environment

Region	Calculated Maximum Radiatic Power Density Level (mWatts/cm**2)	n Hazard Assessment
1. Far Field (Rf) = 10.3 met	ers 0.758	Satisfies FCC MPE
2. Near Field (Rn) = 4.3 mete	ers 1.769	Satisfies FCC MPE
3. Transition Region Rn < Rt < Rf, (Rt)	1.769	Satisfies FCC MPE
4. Between Feed Assembly and Antenna Reflector	168.413	Potential Hazard
5. Main Reflector	2.702	Satisfies FCC MPE
6. Between Reflector and Ground	0.676	Satisfies FCC MPE

It is the	applicant's	responsi	bility to	ensure	that	the	public and
operational	personnel a	re not e	exposed to	harmful	level	s of	radiation.

EXHIBIT B Page 5 of 5

7. <u>Conclusions</u>

Based on the above analysis it is concluded that the FCC MPE guidelines have been exceeded (or met) in the regions of Table 4. and 5. The applicant proposes to comply with the MPE limits by one or more of the following methods.

The proposed earth station will be installed at the Aloha Networks facility. The antenna facility should be surrounded by a fence, which will restrict any public access to the site. The earth station will be marked with the standard radiation hazard warnings, as well as the area in the vicinity of the earth stations to inform those in the general population, who may be working or otherwise present in or near the direct path of the main beams.

Aloha Networks, Inc. will ensure that the main beam of the antenna will be pointed at least one diameter away from any buildings, or other obstacles in those areas that exceeds the MPE levels.

Finally, the earth station operating personnel will not have excess to areas that exceed the MPE levels, while the earth station is in operation. The transmitter will be turned off during periods of maintenance, so that the MPE standard of 5.0 mW/cm**2 will be complied with for those regions in close proximity to the reflector, and normally occupied by operating personnel.

Analysis of Non-Ionizing Radiation for a 0.75 Meter Earth Station System

This report analyzes the non-ionizing radiation levels for a 0.75 meter earth station system. The analysis and calculations performed in this report are in compliance with the methods described in the FCC Office of Engineering and Technology Bulletin, No. 65 first published in 1985 and revised in 1997 in Edition 97-01. The radiation safety limits used in the analysis are in conformance with the FCC R&O 96-326. Bulletin No. 65 and the FCC R&O specifies that there are two separate tiers of exposure limits that are dependant on the situation in which the exposure takes place and/or the status of the individuals who are subject to the exposure. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/ Uncontrolled environment are shown in Table 1. The General Population/ Uncontrolled MPE is a function of transmit frequency and is for an exposure period of thirty minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2. The Occupational MPE is a function of transmit frequency and is for an exposure period of thirty minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2. The Occupational MPE is a function of transmit frequency and is for an exposure period of six minutes or less. The purpose of the analysis described in this report is to determine the power flux density levels of the earth station in the far-field, near-field, transition region, between the subreflector or feed and main reflector surface, at the main reflector surface, and between the antenna edge and the ground and to compare these levels to the specified MPEs.

Table 1. Limits for General Population/Uncontrolled Exposure(MPE)

Frequency Range (MHz)	Power Density (mWatts/cm**2)
30-300	0.2
300-1500	Frequency(MHz)*(0.75/1200)
1500-100,000	1.0

Table 2. Limits for Occupational/Controlled Exposure(MPE)

Frequency Range	(MHz)	Power Density	(mWatts/cm**2)
30-300 300-1500 1500-100,000	D	1. Frequency 5.	(MHz)*(4.0/1200)

Table 3 contains the parameters that are used to calculate the various power densities for the earth stations.

EXHIBIT B Page 2 of 5

Table 3. Formulas and Parameters Used for Determining Power Flux Densities

Parameter	Abbreviation	Value	Units
Antenna Diameter	D	0.75	meters
Antenna Surface Area	Sa	II * D**2/4	meters**2
Feed Flange Diameter	Df	7.7	Cm
Area of Feed Flange	Fa	II * Df**2/4	cm**2
Frequency	Frequency	14250	MHz
Wavelength	lambda	300/frequency(MHz)	meters
Transmit Power	P	1.91	Watts
Antenna Gain	Ges	39.1	dBi
Pi	II	3.1415927	n/a
Antenna Efficiency	n	0.65	n/a

1. Far Field Distance Calculation

The distance to the beginning of the far field can be determined from the following equation: (1)

Distance to the Far Field Region, (Rf) = 0.60 * D**2 / lambda (1) = 16.0 meters

The maximum main beam power density in the Far Field can be determined from the following equation: (2)

On-Axis Power Density in the Far Field, (Wf) = Ges * P / 4 * II * Rf**2 (2) = 4.807 Watts/meters**2 = 0.481 mWatts/cm**2

2. Near Field Calculation

Power flux density is considered to be at a maximum value throughout the entire length of the defined Near Field region. The region is contained within a cylindrical volume having the same diameter as the antenna. Past the boundary of the Near Field region the power density from the antenna decreases linearly with respect to increasing distance.

The distance to the end of the Near Field can be determined from the following equation:(3)

Extent of the Near Field, $(Rn) = D^{*}2 / (4 * lambda)$ (3) = 6.7 meters

The maximum power density in the Near Field can be determined from the following equation:(4)

```
Near Field Power Density, (Wn) = 16.0 * n * P / II * D**2 (4)
= 11.222 Watts/meters**2
= 1.122 mWatts/cm**2
```

EXHIBIT B Page 3 of 5

3. Transition Region Calculations

The Transition region is located between the Near and Far Field regions. The power density begins to decrease linearly with increasing distance in the Transition region. While the power density decreases inversely with distance in the Transition region, the power density decreases inversely with the square of the distance in the Far Field region. The maximum power density in the Transition region will not exceed that calculated for the Near Field region. The power density calculated in Section 1 is the highest power density the antenna can produce in any of the regions away from the antenna. The power density at a distance Rt can be determined from the following equation: (5)

Transition region Power Density, (Tt) = Wn * Rn / Rt (5) = 1.122 mWatts/cm**2

4. Region between Feed Assembly and Antenna Reflector

Transmissions from the feed assembly are directed toward the antenna reflector surface, and are confined within a conical shape defined by the type of feed assembly. The most common feed assemblies are waveguide flanges, horns or subreflectors. The energy between the feed assembly and reflector surface can be calculated by determining the power density at the feed assembly surface. This can be determined from the following equation: (6)

Power Density at Feed Flange, (Wf) = 4 * P / Fa (6) = 164.067 mWatts/cm**2

5. Main Reflector Region

The power density in the main reflector is determined in the same manner as the power density at the feed assembly. The area is now the area of the reflector aperture and can be determined from the following equation: (7)

```
Power Density at the Reflector Surface, (Ws) = 4 * P / Sa (7)
= 17.293 Watts/meters**2
= 1.729 mWatts/cm**2
```

6. Region between Reflector and Ground

Assuming uniform illumination of the reflector surface, the power density between the antenna and ground can be determined from the following equation: (8)

Power Density between Reflector and Ground, (Wg) = P / Sa (8) = 4.323 Watts/meters**2 = 0.432 mWatts/cm**2

EXHIBIT B Page 4 of 5

Table 4. Summary of Expected Radiation levels for Uncontrolled Environment

Region	Calculated Maximum Radiatic Power Density Level (mWatts/cm**2)	
1. Far Field (Rf) = 16.0 met	ters 0.481	Satisfies FCC MPE
2. Near Field $(Rn) = 6.7$ meters	ers 1.122	Potential Hazard
3. Transition Region Rn < Rt < Rf, (Rt)	1.122	Potential Hazard
 Between Feed Assembly and Antenna Reflector 	164.067	Potential Hazard
5. Main Reflector	1.729	Potential Hazard
6. Between Reflector and Ground	0.432	Satisfies FCC MPE

Table 5. Summary of Expected Radiation levels for Controlled Environment

Region	Pow	ed Maximum Radiatic ver Density Level Watts/cm**2) Hazarc	
1. Far Field (Rf) = 16.0 meters	0.481	Satisfies FCC MPE
2. Near Field (R	n) = 6.7 meters	1.122	Satisfies FCC MPE
3. Transition Re Rn < Rt < Rf,	-	1.122	Satisfies FCC MPE
4. Between Feed . and Antenna R	-	164.067	Potential Hazard
5. Main Reflecto	r	1.729	Satisfies FCC MPE
6. Between Refle and Ground	ctor	0.432	Satisfies FCC MPE

It is the	applicant's	responsibility	to	ensure	that	the	public and
operational	personnel a	re not exposed	to	harmful	leve	ls of	radiation.

EXHIBIT B Page 5 of 5

7. <u>Conclusions</u>

Based on the above analysis it is concluded that the FCC MPE guidelineshave been exceeded (or met) in the regions of Table 4. and 5. The applicant proposes to comply with the MPE limits by one or more of the following methods.

The proposed earth station will be installed at the Aloha Networks facility. The antenna facility should be surrounded by a fence, which will restrict any public access to the site. The earth station will be marked with the standard radiation hazard warnings, as well as the area in the vicinity of the earth stations to inform those in the general population, who may be working or otherwise present in or near the direct path of the main beams.

Aloha Networks, Inc. will ensure that the main beam of the antenna will be pointed at least one diameter away from any buildings, or other obstacles in those areas that exceeds the MPE levels.

Finally, the earth station operating personnel will not have excess to areas that exceed the MPE levels, while the earth station is in operation. The transmitter will be turned off during periods of maintenance, so that the MPE standard of 5.0 mW/cm**2 will be complied with for those regions in close proximity to the reflector, and normally occupied by operating personnel.

Analysis of Non-Ionizing Radiation for a 1.0 Meter Earth Station System

This report analyzes the non-ionizing radiation levels for a 1.0 meter earth station system. The analysis and calculations performed in this report are in compliance with the methods described in the FCC Office of Engineering and Technology Bulletin, No. 65 first published in 1985 and revised in 1997 in Edition 97-01. The radiation safety limits used in the analysis are in conformance with the FCC R&O 96-326. Bulletin No. 65 and the FCC R&O specifies that there are two separate tiers of exposure limits that are dependant on the situation in which the exposure takes place and/or the status of the individuals who are subject to the exposure. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/ Uncontrolled environment are shown in Table 1. The General Population/ Uncontrolled MPE is a function of transmit frequency and is for an exposure period of thirty minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2. The Occupational MPE is a function of transmit frequency and is for an exposure period of thirty minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2. The Occupational MPE is a function of transmit frequency and is for an exposure period of six minutes or less. The purpose of the analysis described in this report is to determine the power flux density levels of the earth station in the far-field, near-field, transition region, between the subreflector or feed and main reflector surface, at the main reflector surface, and between the antenna edge and the ground and to compare these levels to the specified MPEs.

Table 1. Limits for General Popul	ation/Uncontrolled Exposure(MPE)				
Frequency Range (MHz)	Power Density (mWatts/cm**2)				
30-300 300-1500 1500-100,000	0.2 Frequency(MHz)*(0.8/1200) 1.0				
Table 2. Limits for Occupational/Controlled Exposure(MPE)					
Frequency Range (MHz)	Power Density (mWatts/cm**2)				
30-300 300-1500	1.0 Frequency(MHz)*(4.0/1200)				

1500-100,000

Table 3 contains the parameters that are used to calculate the various power densities for the earth stations.

5.0

EXHIBIT B Page 2 of 5

Table 3. Formulas and Parameters Used for Determining Power Flux Densities

Parameter	Abbreviation	Value	Units
Antenna Diameter	D	1.0	meters
Antenna Surface Area	Sa	II * D**2/4	meters**2
Feed Flange Diameter	Df	7.7	CM
Area of Feed Flange	Fa	II * Df**2/4	cm**2
Frequency	Frequency	14250	MHz
Wavelength	lambda	300/frequency(MHz)	meters
Transmit Power	P	1.91	Watts
Antenna Gain	Ges	41.5	dBi
Pi	II	3.1415927	n/a
Antenna Efficiency	n	0.63	n/a

1. Far Field Distance Calculation

The distance to the beginning of the far field can be determined from the following equation: (1)

Distance to the Far Field Region, (Rf) = 0.60 * D**2 / lambda (1) = 28.5 meters

The maximum main beam power density in the Far Field can be determined from the following equation: (2)

```
On-Axis Power Density in the Far Field, (Wf) = Ges * P / 4 * II * Rf**2 (2)
= 2.643 Watts/meters**2
= 0.264 mWatts/cm**2
```

2. Near Field Calculation

Power flux density is considered to be at a maximum value throughout the entire length of the defined Near Field region. The region is contained within a cylindrical volume having the same diameter as the antenna. Past the boundary of the Near Field region the power density from the antenna decreases linearly with respect to increasing distance.

The distance to the end of the Near Field can be determined from the following equation: (3)

```
Extent of the Near Field, (Rn) = D^{*2} / (4 * lambda) (3)
= 11.9 meters
```

The maximum power density in the Near Field can be determined from the following equation: (4) $\,$

```
Near Field Power Density, (Wn) = 16.0 * n * P / II * D**2 (4)
= 6.170 Watts/meters**2
= 0.617 mWatts/cm**2
```

EXHIBIT B Page 3 of 5

3. Transition Region Calculations

The Transition region is located between the Near and Far Field regions. The power density begins to decrease linearly with increasing distance in the Transition region. While the power density decreases inversely with distance in the Transition region, the power density decreases inversely with the square of the distance in the Far Field region. The maximum power density in the Transition region will not exceed that calculated for the Near Field region. The power density calculated in Section 1 is the highest power density the antenna can produce in any of the regions away from the antenna. The power density at a distance Rt can be determined from the following equation: (5)

Transition region Power Density, (Tt) = Wn * Rn / Rt (5) = 0.617 mWatts/cm**2

4. Region between Feed Assembly and Antenna Reflector

Transmissions from the feed assembly are directed toward the antenna reflector surface, and are confined within a conical shape defined by the type of feed assembly. The most common feed assemblies are waveguide flanges, horns or subreflectors. The energy between the feed assembly and reflector surface can be calculated by determining the power density at the feed assembly surface. This can be determined from the following equation: (6)

Power Density at Feed Flange, (Wf) = 4 * P / Fa (6) = 164.067 mWatts/cm**2

5. Main Reflector Region

The power density in the main reflector is determined in the same manner as the power density at the feed assembly. The area is now the area of the reflector aperture and can be determined from the following equation: (7)

```
Power Density at the Reflector Surface, (Ws) = 4 * P / Sa (7)
= 9.728 Watts/meters**2
= 0.973 mWatts/cm**2
```

6. Region between Reflector and Ground

Assuming uniform illumination of the reflector surface, the power density between the antenna and ground can be determined from the following equation: (8)

```
Power Density between Reflector and Ground, (Wg) = P / Sa (8)
= 2.432 Watts/meters**2
= 0.243 mWatts/cm**2
```

Table 4. Summary of Expected Radiation levels for Uncontrolled Environment

Region	Calculated Maximum Radiatio Power Density Level (mWatts/cm**2)	n Hazard Assessment
1. Far Field (Rf) = 28.5 m	meters 0.264	Satisfies FCC MPE
2. Near Field (Rn) = 11.9 a	meters 0.617	Satisfies FCC MPE
3. Transition Region Rn < Rt < Rf, (Rt)	0.617	Satisfies FCC MPE
4. Between Feed Assembly and Antenna Reflector	164.067	Potential Hazard
5. Main Reflector	0.973	Satisfies FCC MPE
6. Between Reflector and Ground	0.243	Satisfies FCC MPE

Table 5. Summary of Expected Radiation levels for Controlled Environment

Region	Calculated Maximum Radiatio Power Density Level (mWatts/cm**2)	
1. Far Field (Rf) = 28.5 m	neters 0.264	Satisfies FCC MPE
2. Near Field (Rn) = 11.9 m	eters 0.617	Satisfies FCC MPE
3. Transition Region Rn < Rt < Rf, (Rt)	0.617	Satisfies FCC MPE
4. Between Feed Assembly and Antenna Reflector	164.067	Potential Hazard
5. Main Reflector	0.973	Satisfies FCC MPE
6. Between Reflector and Ground	0.243	Satisfies FCC MPE

It is the	applicant's	responsibility	to to	ensure	that	the	public and
operational	personnel a	are not exposed	l to	harmful	leve	ls of	radiation.

EXHIBIT B Page 5 of 5

7. Conclusions

Based on the above analysis it is concluded that harmful levels of radiation will not exist in regions normally occupied by the public or the earth station's operating personnel. The transmitter will be turned off during antenna maintenance so that the FCC MPE of 5.0 mW/cm**2 will be complied with for those regions with close proximity to the reflector that exceed acceptable levels.

Analysis of Non-Ionizing Radiation for a 1.2 Meter Earth Station System

This report analyzes the non-ionizing radiation levels for a 1.2 meter earth station system. The analysis and calculations performed in this report are in compliance with the methods described in the FCC Office of Engineering and Technology Bulletin, No. 65 first published in 1985 and revised in 1997 in Edition 97-01. The radiation safety limits used in the analysis are in conformance with the FCC R&O 96-326. Bulletin No. 65 and the FCC R&O specifies that there are two separate tiers of exposure limits that are dependant on the situation in which the exposure takes place and/or the status of the individuals who are subject to the exposure. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/ Uncontrolled environment are shown in Table 1. The General Population/ Uncontrolled MPE is a function of transmit frequency and is for an exposure period of thirty minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2. The Occupational MPE is a function of transmit frequency and is for an exposure period of thirty minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2. The Occupational MPE is a function of transmit frequency and is for an exposure period of six minutes or less. The purpose of the analysis described in this report is to determine the power flux density levels of the earth station in the far-field, near-field, transition region, between the subreflector or feed and main reflector surface, at the main reflector surface, and between the antenna edge and the ground and to compare these levels to the specified MPEs.

Table 1. Limits for General Popu	lation/Uncontrolled Exposure(MPE)				
Frequency Range (MHz)	Power Density (mWatts/cm**2)				
30-300 300-1500 1500-100,000	0.2 Frequency(MHz)*(0.8/1200) 1.0				
Table 2. Limits for Occupational/Controlled Exposure(MPE)					
Frequency Range (MHz)	Power Density (mWatts/cm**2)				
30-300 300-1500 1500-100,000	1.0 Frequency(MHz)*(4.0/1200) 5.0				

Table 3 contains the parameters that are used to calculate the various power densities for the earth stations.

EXHIBIT B Page 2 of 5

Table 3. Formulas and Parameters Used for Determining Power Flux Densities

Parameter Antenna Diameter Antenna Surface Area Feed Flange Diameter Area of Feed Flange Frequency Wavelength Transmit Power Antenna Gain Pi	Abbreviation D Sa Df Fa Frequency lambda P Ges II	Value 1.2 II * D**2/4 18.0 II * Df**2/4 14250 300/frequency(MHz) 1.91 43.3 3.1415927	Units meters meters**2 cm cm**2 MHz meters Watts dBi n/a
Antenna Efficiency	n	0.67	n/a n/a

1. Far Field Distance Calculation

The distance to the beginning of the far field can be determined from the following equation: (1)

Distance to the Far Field Region, (Rf) = 0.60 * D**2 / lambda (1) = 41.0 meters

The maximum main beam power density in the Far Field can be determined from the following equation: (2)

```
On-Axis Power Density in the Far Field, (Wf) = Ges * P / 4 * II * Rf**2 (2)
= 1.929 Watts/meters**2
= 0.193 mWatts/cm**2
```

2. Near Field Calculation

Power flux density is considered to be at a maximum value throughout the entire length of the defined Near Field region. The region is contained within a cylindrical volume having the same diameter as the antenna. Past the boundary of the Near Field region the power density from the antenna decreases linearly with respect to increasing distance.

The distance to the end of the Near Field can be determined from the following equation: (3)

```
Extent of the Near Field, (Rn) = D^{*}2 / (4 * lambda) (3)
= 17.1 meters
```

The maximum power density in the Near Field can be determined from the following equation: (4) (4)

```
Near Field Power Density, (Wn) = 16.0 * n * P / II * D**2 (4)
= 4.504 Watts/meters**2
= 0.450 mWatts/cm**2
```

EXHIBIT B Page 3 of 5

3. Transition Region Calculations

The Transition region is located between the Near and Far Field regions. The power density begins to decrease linearly with increasing distance in the Transition region. While the power density decreases inversely with distance in the Transition region, the power density decreases inversely with the square of the distance in the Far Field region. The maximum power density in the Transition region will not exceed that calculated for the Near Field region. The power density calculated in Section 1 is the highest power density the antenna can produce in any of the regions away from the antenna. The power density at a distance Rt can be determined from the following equation: (5)

Transition region Power Density, (Tt) = Wn * Rn / Rt (5) = 0.450 mWatts/cm**2

4. Region between Feed Assembly and Antenna Reflector

Transmissions from the feed assembly are directed toward the antenna reflector surface, and are confined within a conical shape defined by the type of feed assembly. The most common feed assemblies are waveguide flanges, horns or subreflectors. The energy between the feed assembly and reflector surface can be calculated by determining the power density at the feed assembly surface. This can be determined from the following equation: (6)

Power Density at Feed Flange, (Wf) = 4 * P / Fa (6) = 30.023 mWatts/cm**2

5. Main Reflector Region

The power density in the main reflector is determined in the same manner as the power density at the feed assembly. The area is now the area of the reflector aperture and can be determined from the following equation: (7)

Power Density at the Reflector Surface, (Ws) = 4 * P / Sa (7) = 6.755 Watts/meters**2 = 0.676 mWatts/cm**2

6. Region between Reflector and Ground

Assuming uniform illumination of the reflector surface, the power density between the antenna and ground can be determined from the following equation: (8)

Power	Density	between	Reflector	and	Ground,	(Wg)	~	P / Sa	(8)
							~	1.689	Watts/meters**2
							=	0.169	mWatts/cm**2

Table 4. Summary of Expected Radiation levels for Uncontrolled Environment

Region	Calculated Maximum Radiatio Power Density Level (mWatts/cm**2)	
1. Far Field (Rf) = 41.0 me	eters 0.193	Satisfies FCC MPE
2. Near Field $(Rn) = 17.1$ me	eters 0.450	Satisfies FCC MPE
3. Transition Region Rn < Rt < Rf, (Rt)	0.450	Satisfies FCC MPE
 Between Feed Assembly and Antenna Reflector 	30.023	Potential Hazard
5. Main Reflector	0.676	Satisfies FCC MPE
6. Between Reflector and Ground	0.169	Satisfies FCC MPE

Table 5. Summary of Expected Radiation levels for Controlled Environment

Region	Calculated Maximum Radiatic Power Density Level (mWatts/cm**2)	
1. Far Field (Rf) = 41.0 me	ters 0.193	Satisfies FCC MPE
2. Near Field (Rn) = 17.1 me	ters 0.450	Satisfies FCC MPE
3. Transition Region Rn < Rt < Rf, (Rt)	0.450	Satisfies FCC MPE
 Between Feed Assembly and Antenna Reflector 	30.023	Potential Hazard
5. Main Reflector	0.676	Satisfies FCC MPE
6. Between Reflector and Ground	0.169	Satisfies FCC MPE

It :	is	the	applicant's	re	sponsibility	to	ensure	that	the	public and
opera	atio	onal	personnel	are	not exposed	to	harmful	leve	ls of	radiation.

EXHIBIT B Page 5 of 5

7. <u>Conclusions</u>

Based on the above analysis it is concluded that harmful levels of radiation will not exist in regions normally occupied by the public or the earth station's operating personnel. The transmitter will be turned off during antenna maintenance so that the FCC MPE of 5.0 mW/cm**2 will be complied with for those regions with close proximity to the reflector that exceed acceptable levels.

Aloha Networks, Inc. FCC Form 442-Filing Document

- 66

Exhibit C

Demonstration of Compliance with FCC Rules

Aloha Networks, Inc. seeks authority pursuant to Section 25.209(e) of the Commission's Rules, 47 C.F.R § 25.209(e), to operate a VSAT earth station antenna ranging from 0.45 to 1.2 meter in diameter. The antennas are the Channel Master 0.45m, 0.60m, 0.75m, 1.0m, and a 1.2 meter offset antenna system. As required by the rules attached are the following: (1) Exhibit D - Engineering analysis showing compliance with the two degree spacing policy for sub-meter VSAT antennas; (2) Exhibit E - Manufacturer antenna patterns for Mid Frequency Bands.

Exhibit D: 2º Adjacent Satellite - Technical Analysis

Table of Contents

- 1.0 Purpose
- 2.0 Azimuth Axis System Performance
- 2.1 Antenna Performance in the Azimuth Axis
- 2.2 Uplink Flange Density and Off-Axis EIRP Density
- 2.3 Conclusion

Table 1: VSAT Uplink Flange and EIRP Density to 2° Adjacent Satellites

- 3.0 Elevation Axis System Performance
- 3.1 Antenna Performance in the Elevation Axis (Table 2)
- 3.2 Uplink Flange Density and Off-Axis EIRP Density
- 3.3 ITU Recommendation
- 3.4 Existing HNS Elliptical Antennas
- 3.5 Conclusion

1.0 Purpose

This Exhibit will provide the technical analysis showing the performance of the Channel Master antennas (0.45, 0.60, 0.75, 1.0, and 1.2 meter) and space system transmission characteristics are compliant with the Commission's two degree (2°) spacing policy. This Exhibit will show the adjacent satellite interference caused by transmissions from the Channel Master antenna (0.45 to 1.2-meter) will be no greater than an antenna compliant with the combined 47 C.F.R. § 25.209 and 25.212 for uplink EIRP density interference towards adjacent satellites spaced at two degree intervals of longitude in the azimuth axis and for proposed NGSO systems in the elevation axis.

2.0 Azimuth Axis System Performance

Exhibit E (Antenna Patterns) provides the measured performance data for the Channel Master 0.45, 0.60, 0.75, 1.0, and 1.2 meter antenna referenced in this Exhibit.

2.1 Antenna Performance in the Azimuth Axis

The measured data indicates that the 0.45, 0.60, 0.75, 1.0, and the 1.2 meter antenna are not compliant with the antenna pattern envelope specified in 47 C.F.R. § 25.209(a) from 1° to 1.7° for the azimuth axis. However, the Channel Master antennas will meet the 29-25Log(θ) specifications between 1.7° and 7° rather than 1.25° and 7° as specified in 47 C.F.R. § 25.209(g) for small antennas operating in the 12/14 GHz Band (Domestic FSS Ku-Band).

Domestic FSS Ku-Band satellites are spaced at 2° intervals of longitude with respect to the center of the earth. However, the angular separation of the satellites as viewed by earth stations from the surface of the earth is nominally 2.3°. Therefore, the antenna's compliance with the FCC requirements for angles 1.7° and greater will provide the required interference isolation performance toward adjacent satellites.

The Channel Master antennas referenced above are designed to use feeds to support either of the following configurations:

- 1) a single FSS (transmit/receive) satellite
- a combination of FSS (transmit/receive) and BSS (receive only DBS) satellites in the mode where the antenna will only transmit and receive using a single FSS satellite, the satellites to be used for this operation are domestic satellites (assume to be full domestic arc).

2.2 Uplink Flange Density and Off-Axis EIRP Density

Combining 47 C.F.R. § 25.209 (Antenna performance standards) and 25.212 (Narrow-Band Transmissions in the Fixed-Satellite Services) provides the maximum EIRP density a digital VSAT earth station can transmit toward an adjacent satellite. 47 C.F.R. § 25.209(a) determines the maximum acceptable VSAT earth station transmit antenna gain toward the adjacent satellite as follows:

Maximum Transmit Antenna Gain at $2^\circ = 29-25*Log_{10}(2^\circ) dBi = 21.5 dBi$

47 C.F.R. § 25.209© specifies a maximum acceptable digital VSAT earth station uplink power density at the antenna transmit flange of -14 dBW/4 kHz. Therefore, the maximum adjacent satellite interference (ASI) EIRP density can be determined by combining 47 C.F.R. § 25.209(a) and 25.212(c) in the following formula: Maximum ASI EIRP Density = Max. Transmit Antenna Gain at 2° + Max.

Transmit Power Density at Antenna Flange = 21.5 dBi + (-14 dBW/4 kHz)= 7.5 dBW/4 kHz

The following table provides the uplink flange density and EIRP density toward the twodegree adjacent satellites for all Aloha Networks proposed remote antenna system transmit data rates, modulation, transmit power, and bandwidth. A transmission line loss Aloha Networks, Inc. FCC Form 442-Filing Document

of 0.2 dB between the HPC (transmit HPA) and the antenna flange and the gains of each remote antenna at 2° boresight are used in calculating the uplink flange density and EIRP density.

2.3 Conclusion

Section 2 of this Exhibit showed that each of the remote antenna (0.45, 0.60, 0.75, 1.0, and 1.2 meter) are compliant with the 47 C.F.R. § 25.209 antenna pattern envelope in the direction of the adjacent satellites spaced at two degrees from the space satellite. The table in this Exhibit indicates in all transmission cases the uplink flange density is below the maximum specification of -14 dBW/4 kHz (47 C.F.R. § 25.212{c}). Also, the EIRP density in the direction of the adjacent satellites at two degrees of separation will be below the +7.5 dBW/ 4 kHz maximum EIRP density criteria for adjacent satellite interference required by the combination of 47 C.F.R. § 25.209 and 25.212. Therefore, for the critical adjacent satellite interference specification of EIRP density at two degrees from boresight, the remote antennas to be use by Aloha Networks, Inc. will provide performance equivalent to an antenna that is compliant with applicable 47 C.F.R. § 25 rules.

Table 1: Aloha Networks VSAT Uplink Flange and EIRP Density to 2° Adjacent Satellites

HPC to Antenna Loss: 0.2 Db

ANTENNA SIZE		IRANSMIT DATA RATI		HPC POWER	CARRIER Bandwidth	$POW \vdash R$	2°° EROM	MARGIN TO +7.5 DBW 4 KHZ 4 IRP DENSHY SPECIFICATION
(M)	(DB1)	(KBPS)	MODULATION	(WATTS)	(KHZ)	KHZ)	(DBW 4 KHZ)	(DB)
0.45	34.7	129	QPSK	2	2400	-25.0	6.72	0.78
0.60	37.2	129	QPSK	2	2400	-25.0	2.22	5.28
0.75	39.1	129	QPSK	2	2400	-25.0	-0.88	8.38
1.00	41.5		QPSK	2	2400	-25.0	-11.68	19.18
1.20	43.3		QPSK	2	2400	-25.0	-12.68	20.18

3.0 Elevation Axis System Performance

The reflectors of the remote antennas are elliptically shaped. The antenna performance in the elevation axis is not a concern for the current Ku-Band geostationary (GEO) satellites but is a potential concern for proposed non-geostationary (NGSO) satellite systems which desire to use the same frequency band as the domestic US FSS Ku-Band used by Aloha Networks' VSAT networks. This section will address the interference into NGSO systems from the referenced Channel Master Remote Antenna elevation axis.

3.1 Antenna Performance in the Elevation Axis

As seen in Exhibit E (Antenna Patterns), the remote antennas transmit performance in the elevation axis are compliant with the 47 C.F.R. § 25.209 antenna pattern specification 32- $25*Log_{10}(\Theta)$ dBi starting at 2.5 degrees off boresight. Also from Exhibit E, at two degrees from boresight the gains of the 0.45 and 0.60-meter antennas are 31.7 and 27.2 dBi while 47 C.F.R. § 25.209 provides for an antenna gain of 24.5 dBi at two degrees, a difference of 7.2 dB for the 0.45m remote antenna and 2.7 dB for the 0.60m remote antenna.

Antenna Size		Margin Above the 47 C.F.R. § 25.209 (24.5 dBi) Gain
(m)	(d B)	Specification
0.45	31.7	7.2
0.60	27.2	2.7
0.75	24.1	-0.4
1.00	13.3	-11.2
1.20	12.3	-12.2

3.2 Uplink Flange Density and Off-Axis EIRP Density

The table (table 1) in this Exhibit indicates the maximum uplink flange density to be used for carrier transmission from the remote antennas is -25 dBW/4 kHz rather than the maximum allowable -14 dBW/4 kHz under 47 C.F.R. § 25.212 for narrow and/or wideband digital services. Therefore, the EIRP density at two degrees off boresight in the elevation axis will be the combination of the antenna performance and the maximum uplink flange density which equates to the following:

	EIRP Densi	ity @ 2	off Boresight	in the elevation	axis
--	-------------------	---------	---------------	------------------	------

a) 0.45 m:	31.7 dBi + (-25 dBW/4 kHz) = 6.7 dBW/4 kHz
b) 0.60 m:	27.2 dBi + (-25 dBW/4 kHz) = 2.2 dBW/4 kHz
c) 0.75 m:	24.1 dBi + (-25 dBW/4 kHz) = -0.9 dBW/4 kHz
d) 1.0 m:	13.3 dBi + (-25 dBW/4 kHz) = -11.7 dBW/4 kHz
f) 1.2 m:	12.3 dBi + (-25 dBW/4 kHz) = -12.7 dBW/4 kHz

Also specified in 47 C.F.R. § 25.212 is the uplink flange density limit for narrow-band analog carriers. For these carriers the uplink flange density limit is -8 dBW/4 kHz. This is 6 dB higher than the digital service limit. Since the FSS Ku-Band is used by both analog and digital services the NGSO systems will need to be designed for the worst case analog FSS densities. Combining 47 C.F.R. § 25.209 and 25.212 for analog services the maximum off-axis EIRP density at two degrees in the elevation axis is:

Max. Elevation Axis EIRP Density at $2^{\circ} = 32-25Log(2^{\circ})+(-8 \text{ dBW}/4 \text{ kHz})$ = 16.5 dBW/4 kHz

Therefore, the narrow-band analog off-axis EIRP density at 2° is 16.5 dBW/4 kHz which is **9.8 dB higher** than the **6.7 dBW/4 kHz** maximum EIRP density.

3.3 ITU Recommendation

The ITU is working to provide recommended off-axis power density specifications for the operation of proposed NGSO systems using the same frequency band as the Region 2 FSS Ku-Band (11.7 to 12.2 GHz space to earth and 14.0 to 14.5 GHz earth to space) as Aloha Networks VSAT networks plans to utilize. Chapter 3 of the latest ITU CPM Report, prepared by the ITU for the WRC-2000, indicates that the off-axis EIRP density levels allowed are much less stringent than the combined levels from 47 C.F.R. § 25.209 and 25.212 (by over 10 dB). ITU-R document S.524 also discusses this issue as well. In the ITU documents, there are different levels specified for different carrier types, the FM-TV levels being over 11 dB more permissible.

3.4 Existing HNS Elliptical Antennas

Hughes Networks Systems (HNS) has an existing FCC license (call sign E900682) which includes an antenna with a dimension of 46 cm in the elevation axis compared to the higher dimensions for the Aloha Networks remote antennas. Therefore, there is already a licensed antenna with similar, and most likely worse, antenna pattern performance in the elevation axis. The HNS application indicates the maximum uplink flange density, which will be used with this antenna, is the maximum allowable in 47 C.F.R. § 25.212 of -14 dBW/4 kHz. HNS has deployed elliptical shaped VSAT antennas at many of its customer's sites including thousands of US based installations at Mobile gas stations.

3.5 Conclusion

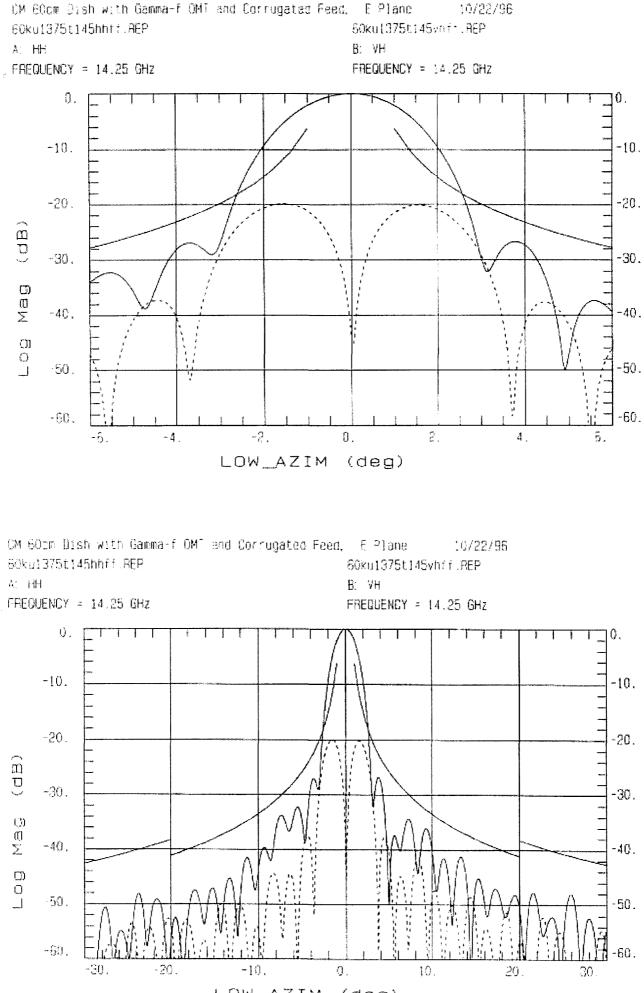
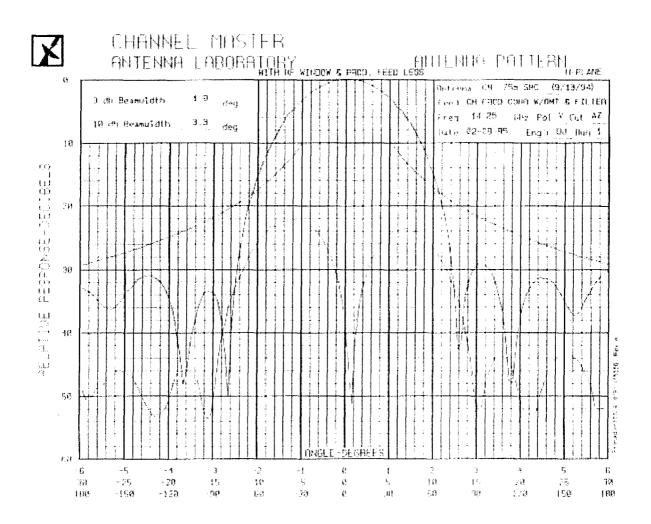
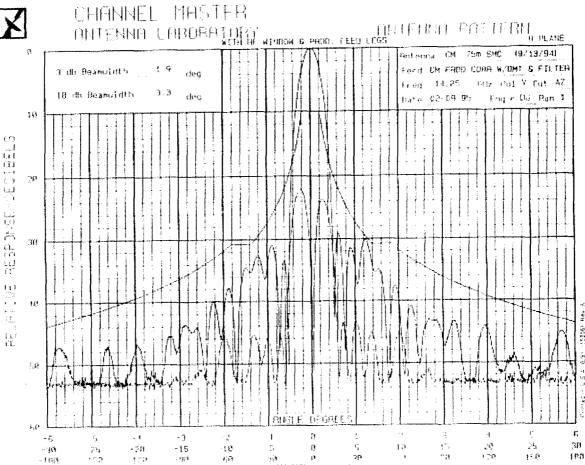

For future NGSO system interference concerns, the Aloha Networks remote antenna applications will have off-axis EIRP density performance below currently operational FSS systems, FSS maximum limits and the ITU recommendations.

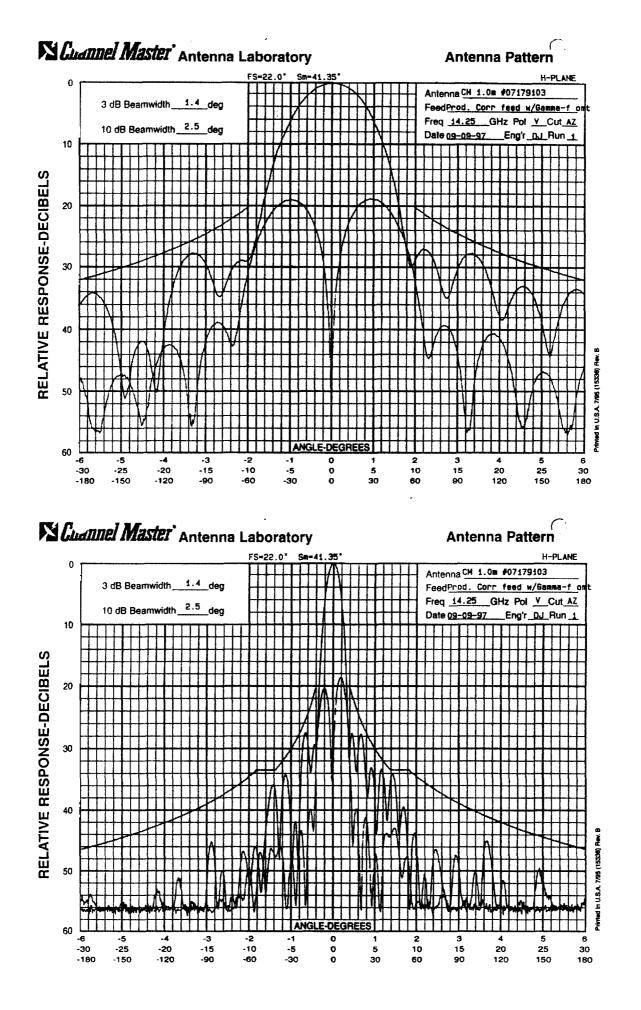
Exhibit D - Page 8 of 8 September 4, 2001 Aloha Networks, Inc. FCC Form 442-Filing Document


Exhibit E

Antenna Patterns for Channel Master Antennas

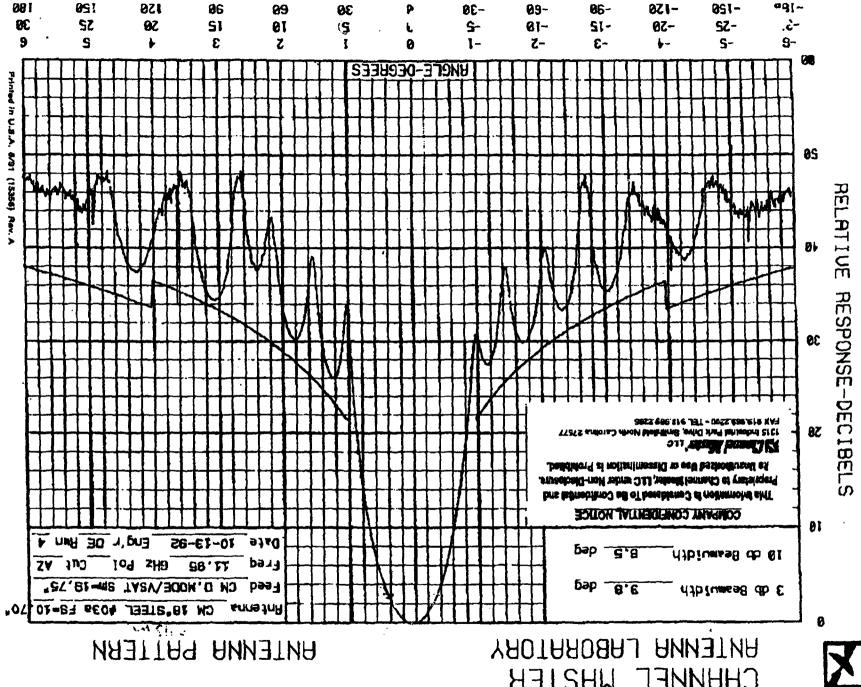

Transmit Mid Frequency Bands

LOW_AZIM (deg)



0.00 M 1971....

1.14



CHANNEL MASTLR ONTENNA LABORATORY

	$\{ \ $	ſΤΓ	同的	PHI	TERH
--	---------	-----	----	-----	------

		ONTENNA	THRDR	HTURY	j j j	HITCHER POITERN	
	ß	4 (th deamaidth 18 (th Reamaidth	tuar deg			Ontonina (21 1.25 403493:38 1.8-26.29) Found CM (1924) VSAT Tx (1465 58-48, 5) Frieq (14 25 1.36 Part V Tat A2 Date (27 1.22 Fog) (3 Bun 1	
8 4 3 8 2 8 2 8 2 8 2 8							
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, ()						
• • : • : • ·	104						
	10			FINGL	E-DEGREES		filest > E
		i i, i, i, 195 i 201 199 i 199 i 201	~35 - 355 - 첫덕	~7 ·1 -18 -5 -68 ~30	0 1 0 5 0 38	2 3 4 5 6 10 15 28 29 30 60 93 150 150 180	
X]				A	HITNUT PRITERN	
X	2	питенна	L ABOR			HITNIND PAITERN HITRNID PAITERN Hontenna (M. 1. 20. #03493119 FS=26.95 Feed (M. 0000035AL 1x 1268 5m-48, 5 Freg. 14.25 GHz Pol V Cut 4Z Data (02-12-94 Frig. (NE Run 1	
	11	HHTEHHAA Edh Beamuzeth				H-FLAND Ontenna (11 1.75 #03493119 FS=26.95 Feed (14 00/05/564) 1x 1265 5m-48.75 Freq 14.25 GHz Pol V Cut 4Z	
	29 29	LILTENNA Fats Beamuziette 19 cm Reamuziette				H-FLAND Ontenna (11 1.75 #03493119 FS=26.95 Feed (14 00/05/564) 1x 1265 5m-48.75 Freq 14.25 GHz Pol V Cut 4Z	
	18 244	EHHTEHHA E dis Beamstelle 19 en Beamstelle	L FIBOR			H-FLAND Ontenna (11 1.75 #03493119 FS=26.95 Feed (14 00/05/564) 1x 1265 5m-48.75 Freq 14.25 GHz Pol V Cut 4Z	
	16 58 19	LILLENDE Falls Beamutette 19 cm Beamutette 19 cm Beamutette 19 cm Beamutette	L FIBOR			Interna (************************************	4. Art 30201
	18 244	L HITEHNA E dh Branuzielth 19 ch Bearuidth	L FIBOR			Interna (************************************	~ા

ę

з , -

CHUNNEL MASTER

Exhibit G Testing Program Description

Aloha Networks, Inc. is a VSAT network supplier which has developed advanced commercial VSAT services using the ALOHA access protocol. Aloha Networks has developed Spread ALOHA ® Multiple Access (SAMATM), a spread-spectrum multiple access technology that overcomes the current bottleneck in two-way digital wireless communication networks by providing an improved access methodology required for very large numbers of remote users. Aloha would like to perform some system testing in order to determine the operational viability of their new spread-spectrum based transmission scheme using sub-meter remote facilities.

Aloha proposes to employ a 4.5 meter hub earth station and VSAT terminals employing antennas ranging in size from 45 cm to 1.2 meters as remotes. Initially the hub and remotes will be collocated at their facilities in San Francisco, CA. Eventually up to 50-250 antennas will be located at positions in the continental United States (CONUS) to examine the impact of multiple remote users distributed across the country. Aloha believes there VSAT network access architecture and RF design will allow for sub-meter remote terminals however they would like to ensure proper system performance prior to launch of a commercial version on this product. Using a moderately large number of distributed remote terminals over a several month period will allow Aloha Networks to accurately analyze the product's performance and identify the feasibility of certain remote configurations and assist in the optimization of the design.