AeroCube-7
 Proximity Operations CONOPS

Joseph Gangestad
14 February 2014

Astrodynamics Department

RPO CONOPS Flow Chart

RPO CONOPS Notional Diagram

Initial Conditions

- After deployment and during checkout, AeroCubes will drift due to initial deployment dispersions and checkout activities.
- Begin RPO with substantial (>10 km) in-track separation between AeroCubes, plus some radial and cross-track separation
- Will use differential drag during checkout if available to minimize in-track separation as much as possible
- Assumptions for this analysis:
- Orbit is 500 km circular, 65 deg inclination
- Min drag area: $150 \mathrm{~cm}^{2}$
- Max drag area: $500 \mathrm{~cm}^{2}$
- Mass: 2 kg

Approach Staging Point

- RPO process begins with approach to a "staging point" to ensure control of the spacecraft and efficacy of planned maneuver schemes.
- Use on-board propulsion to correct plane differences between AeroCubes:
- Based on AeroCube-4 experience, as much as 0.002 deg of inclination change, costing $30 \mathrm{~cm} / \mathrm{s}$ of $\Delta \mathrm{V}$.
- As much as 0.005 deg of RAAN change, costing $75 \mathrm{~cm} / \mathrm{s}$.
- Budget $2 \mathrm{~m} / \mathrm{s}$ total, performed in small amounts over many orbits.
- Can perform plane change maneuvers at any time.
- Use differential drag with a bang-bang attitude-control scheme to approach the target AeroCube within 2 km in-track. This is the "staging point."
- At end of differential drag process, mean motion of chaser and target are matched.

Approach Staging Point, In-Plane Motion

Approach Staging Point, Out-of-Plane Motion

At the staging point, the target has some cross-track motion.

The line of motion (the orbit velocity vector) of the target AeroCube goes into/out of the screen in this plot. The chaser AeroCube "orbits" around that line of motion

Risk mitigation: by following this trajectory, the chaser never crosses the path of the target, preventing collisions.

High-fidelity orbit propagation with TRACE

Tests at Staging Point: Eccentricity Reduction

Small burns ($\sim 10 \mathrm{~mm} / \mathrm{s}$) performed in the radial direction reduce the radius of the Hill's orbit (left). These burns can occur as often as every half-orbit. In practice, will use longer lead times. Note that the cross-track motion (below) is not affected; the chaser still never crosses the path of the target.

Tests at Staging Point: Cross-Track Reduction

Note on Risk from Staging-Point Tests

- In the event that a test burn is misaligned entirely in the in-track direction, the chaser will continue to corkscrew around the line of motion of the target due to cross-track motion. Closest approach to target's line of motion $>50 \mathrm{~m}$.
- If a test burn is misaligned in the cross-track direction, the change in cross-track motion is minimal.
- No individual burn is sufficient to put the chaser AeroCube on a collision course with the target.
- Until we have high confidence in the performance of the thruster later in the mission, each burn will be followed by orbit determination and thruster-performance analysis to ensure that the new desired orbit was achieved.
- In the event of an anomaly or undesired behavior, no further burns will be performed to ensure the safety of both spacecraft.

Transfer: Staging Point to RPO Start Point

RPO: Initiate In-Track Drift and Approach Target

A small burn ($\sim 10 \mathrm{~mm} / \mathrm{s}$) induces in-track motion relative to the target. The chaser corkscrews around the target over the course of several orbits, passes the target, and then performs another burn $(\sim 10 \mathrm{~mm} / \mathrm{s})$ to stop 1 km beyond the target.

RPO: Chaser-to-Target Range

The duration of the RPO depends on the amount of in-track drift induced. For this $\Delta \mathrm{V}=20$ mm / s (start and stop) example, the RPO takes about one day, with closest approach halfway.

In this example the closest approach is $\sim 50 \mathrm{~m}$. As confidence grows, the radius of the Hill's orbit will be reduced.

RPO: Chaser-to-Target Relative Velocity

In this example, the relative velocity between the chaser and target does not exceed $0.35 \mathrm{~m} / \mathrm{s}(<1 \mathrm{mph})$.

Even is a collision did happen, these relative velocities are not high enough to cause fragmentation or a catastrophic breakup.

$\Delta \mathrm{V}$ Budget

Event	$\mathbf{\Delta V}[\mathrm{m} / \mathrm{s}]$	Comment
Plane corrections	2	
Staging-point test: eccentricity reduction	0.1	$\sim 10 \mathrm{~mm} / \mathrm{s}$ per maneuver
Staging-point test: cross-track reduction	0.1	$\sim 10 \mathrm{~mm} / \mathrm{s}$ per maneuver
Transfer from staging point to RPO start point	0.12	Maximum possible cost (for transfer in 1 orbit)
RPO: start and stop in-track drift	0.02	Changes radius by $\sim 20 \mathrm{~m}$
RPO: modify radius of Hill's orbit	0.01	

A full RPO cycle, including Hill's orbit modifications, costs $\sim 30 \mathrm{~mm} / \mathrm{s}$.
Even with this conservative DV budget, the $10 \mathrm{~m} / \mathrm{s}$ capacity of the AeroCube-7 system should permit dozens of RPO cycles with considerable propellant margin.

Summary

- The AeroCube-7 RPO CONOPS has been designed to minimize risk to both vehicles and to build maximum confidence via incremental testing of maneuver schemes.
- "Dress rehearsal" maneuvers at a staging point will characterize control authority on chaser AeroCube without risk to target.
- Cross-track amplitude is always maintained to ensure that the chaser AeroCube never crosses the path of the target, preventing collision.
- During RPO, chaser "corkscrews" around target
- Radius of Hill's orbit will be reduced incrementally over several RPO cycles.
- $\Delta \mathrm{V}$ budget has considerable margin
- Each RPO cycle costs ~30 mm/s
- Can perform dozens of RPO cycles

