시 험 성 적 서
TEST REPORT
페이지(page) : (1) / 충(Total) (86)

2024. 04.05

주식회사 아이씨알 대표이사

The head of INTERNATIONAL CERTIFICATION REGISTRAR
본 성적서의 진위 확인은 G4B 혹은 ICR 홈페이지에서 가능합니다.
The authenticity of the test report can be checked on the G4B or ICR website.
경기도 김포시 양촌읍 황금3로7번길 112 / Tel: 02-6351-9001 ~ 6
112. Hwanggeum3-ro 7beon-gil, Yangchon-eup, Gimpo-si, Gyeonggi-do, Korea / Tel: 02-6351-9001 ~ 6

Contents

1. Applicant \& Manufacturer \& Test Laboratory Information 4
2. Equipment under Test(EUT) Information 5
3. Test Summary $\underline{6}$
4. Test Result LE - Type A - (1 Mbps) 옹
5. Test Result LE - Type A - (2 Mbps) $\underline{25}$
6. Test Result LE - Type A - (125 Kbps) 42
7. Test Result LE - Type A - (500 Kbps) 59
8. Test Result LE - Type B 76
9. Used equipment 86

Revision History

Issued Report No.	Issued Date	Revisions	Effect Section
ICRT-TR-E241038-0A	2024.04.05	Initial Issue	All

1. Applicant \& Manufacturer \& Test Laboratory Information

1.1 Applicant information

Applicant	AISOLUTION CO., LTD
Address	$28-4$, Samyang-ro 29gil, Gangbuk-gu, Seoul, 01194, Republic of Korea

1.2 Manufacturer Information

Applicant	AISOLUTION CO., LTD
Address	$28-4$, Samyang-ro 29gil, Gangbuk-gu, Seoul, 01194, Republic of Korea

1.3 Test Laboratory Information

Laboratory	ICR Co., Ltd.
Address	112, Hwanggeum 3-ro 7beon-gil, Hagun-ri, Yangchon-eup, Gimpo-si, Gyeonggi-do, Korea
Telephone No.	$+82-2-6351-9002$
Fax No.	$+82-2-6351-9007$
KOLAS No.	KT652
KC \& FCC	KR0165

1.4 Measurement Uncertainty

Parameter	Uncertainty	Limit
Occupied Channel Bandwidth	2.75%	$\pm 5 \%$
RF output power, conducted	1.39 dB	$\pm 1.5 \mathrm{~dB}$
Power Spectral Density, conducted	1.65 dB	$\pm 3 \mathrm{~dB}$
Unwanted Emissions, conducted	1.82 dB	$\pm 3 \mathrm{~dB}$
Supply voltages	0.06%	$\pm 3 \%$
Time	1.17%	$\pm 5 \%$
All emissions, radiated (Under the 1 GHz$)$	3.22 dB	$\pm 6 \mathrm{~dB}$
All emissions, radiated (Above the 1 GHz$)$	3.67 dB	$\pm 6 \mathrm{~dB}$

2. Equipment under Test(EUT) Information

2.1 General Information

Product Name	Bluetooth Barcode Scanner Sled
Model Name	KDC1000
Additional Model Name	KDC1100
FCC ID	VH9-KDC1000
Power Supply	DC 3.7 V

2.2 Additional Information

Equipment Class	DTS-Digital Transmission System	
Device Type	Stand-alone	
Adaptive/Non-Adaptive	Non-Adaptive Equipment	
Operating Frequency	2402 MHzz $\sim 2480 \mathrm{MHz}$	0.81 dBm
RF Output Power	Bluetooth LE 1 Mbps	0.78 dBm
	Bluetooth LE 2 Mbps	0.80 dBm
	Bluetooth LE 125 Kbps	0.76 dBm
	Bluetooth LE 500 Kbps	
Number of Channel	40	
Modulation Type	GFSK	
Antenna Type	Chip Antenna	
Antenna Gain	3.14 dBi	

2.3 Product Type

A Type	C Type Connector
B Type	Lightning Connector

* The internal circuitry of type A and type B is the same.

2.4 Reason of Additional Model Name

NO	Family Model Name	Difference
1	KDC1100	Only the outer case has been modified.
		Same electrical specifications, structure and circuit as the basic model

3. Test Summary

3.1 Test standards and results

FCC Part 15 Subpart C						
Clause	Test items	Applied	Results			
$\S 15.247(\mathrm{a})(2)$	6 dB Bandwidth	\square	PASS			
$\S 15.247(\mathrm{~b})(3)$	Maximum Conducted Output Power	\square	PASS			
$\S 15.247(\mathrm{e})$	Power Spectral Density	\square	PASS			
$\S 15.247(\mathrm{~d})$	Conducted Spurious Emission \& band Edge	\square	PASS			
$\S 15.247(\mathrm{~d}) \&$						
$\S 15.209 \& \S 15.205$	Radiated Spurious Emission	\square	PASS			
$\S 15.207$	Power Line Conducted Emission	\square	PASS			

3.2 Test Methodology

- Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

3.3 Configuration of Test System

- Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

3.4.1 Radiated emission test

- Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10: 2013 to determine the worse operating conditions. Final radiated emission tests were conducted at 3 m Semi Anechoic Chamber.
The turntable was rotated through 360 degrees and the EUT was tested by positioned three orthogonal planes to obtain the highest reading on the field strength meter. Once maximum reading was determined, the search antenna was raised and lowered in both vertical and horizontal polarization.

3.5 Antenna requirement

- According to $\S 15.203$, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.
The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.
The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
And according to $\S 15.247$ (b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi .
Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs $(b)(1),(b)(2)$, and $(b)(3)$ of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi .

Result: Pass

The transmitter has a Chip Antenna. The directional gain of the antenna is $\mathbf{3 . 1 4} \mathbf{~ d B i}$.

4. Test Result - Type A - LE (1 Mbps)

4.1. 6 dB Bandwidth

4.1.1 Test procedure

ANSI C63.10-2013 Clause 11.8

4.1.2 Limit

§15.247 (a) (2)
Systems using digital modulation techniques may operate in the $902-928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands. The minimum 6 dB bandwidth shall be at least 500 kHz .

4.1.3 Test data

Result : Pass

4.2 Maximum Conducted Output Power

4.2.1 Test procedure

ANSI C63.10-2013 Clause 11.9

4.2.2 Limit

§15.247 (b) (3)
For systems using digital modulation in the $902-928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

4.2.3 Test data

Result : Pass

Mode	Frequency (MHz)	Measured Value (dBm)	Limit (dBm)
Bluetooth LE 1Mbps	2402	0.22	30
	2440	0.61	
	2480	0.81	

4.3 Power Spectral Density

4.3.1 Test procedure

ANSI C63.10-2013 Clause 11.10

4.3.2 Limit

§15.247 (e)
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

4.3.3 Test data

Result : Pass

4.4 Conducted Spurious Emission \& Band Edge

4.4.1 Test procedure

ANSI C63.10-2013 Clause 11.11, 11.13

4.4.2 Limit

§15.247 (d)
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

4.4.3 Test data

Result : Pass

4.5 Radiated Spurious Emission

4.5.1 Test procedure

ANSI C63.10-2013 Clause 11.11, 11.12

4.5.2 Limit

§15.247 (d)
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).
§15.209 Radiated emission limits; general requirements.(a)
Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30.0$	30	30
$30-88$	$100^{\star \star}$	3
$88-216$	$150^{\star \star}$	3
$216-960$	$200 \star \star$	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands $54-72 \mathrm{MHz}, 76-88$ $\mathrm{MHz}, 174-216 \mathrm{MHz}$ or $470-806 \mathrm{MHz}$. However, operation within these frequency bands is permitted under other sections of this part, e.g., $\S \S 15.231$ and 15.241.
§15.205 Restricted bands of operation.(a),(b)

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
${ }^{1} 0.495-0.505$	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
$8.41425-8.41475$	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\left.{ }^{2}\right)$
13.36-13.41			

${ }^{1}$ Until February 1, 1999, this restricted band shall be $0.490-0.510 \mathrm{MHz}$.
${ }^{2}$ Above 38.6
Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in $\S 15.209$. At frequencies equal to or less than 1000 MHz , compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz , compliance with the emission limits in $\S 15.209$ shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

4.5.3 Test data

Result : Pass

- Below 30 MHz_Low ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
It was not found any emissions peaks found from the EUT.								

- Below 30 MHz_Mid ch

| Frequency
 (MHz) | Reading
 $(\mathrm{dBuV} / \mathrm{m})$ | Detector | Pol. | Factor
 (dB) | Result
 $(\mathrm{dBuV} / \mathrm{m})$ | Limit
 $(\mathrm{dBuV} / \mathrm{m})$ | Margin
 $(\mathrm{dBuV} / \mathrm{m})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | note | It was not found any emissions peaks found from the EUT. | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |

- Below 30 MHz _High ch

| Frequency
 (MHz) | Reading
 $(\mathrm{dBuV} / \mathrm{m})$ | Detector | Pol. | Factor
 (dB) | Result
 $(\mathrm{dBuV} / \mathrm{m})$ | Limit
 $(\mathrm{dBuV} / \mathrm{m})$ | Margin
 $(\mathrm{dBuV} / \mathrm{m})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | note | (d) |
| :--- |

It was not found any emissions peaks found from the EUT.

- $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ Low ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
31.940	51.37	QP	V	-27.1	24.27	40	15.73	
37.275	51.64	QP	V	-25.3	26.34	40	13.66	
359.994	48.29	QP	H	-20.1	28.19	46	17.81	
413.053	43.07	QP	H	-18.2	24.87	46	21.13	

- $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ Mid ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
36.984	52.19	QP	V	-25.5	26.69	40	13.31	
40.961	48.87	QP	V	-23.9	24.97	40	15.03	
424.693	42.09	QP	H	-18.0	24.09	46	21.91	
469.313	41.79	QP	H	-17.4	24.39	46	21.61	

$-30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ _High ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
36.402	51.46	QP	V	-25.6	25.86	40	14.14	
40.670	48.45	QP	V	-24.0	24.45	40	15.55	
359.994	49.38	QP	H	-20.1	29.28	46	16.72	
421.783	42.34	QP	H	-18.0	24.34	46	21.66	

- 1 GHz Above_Low ch

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
2328.00	47.25	PK	V	-11.0	36.25	74	37.75	Restricted band
	33.62	AVG	V		22.62	54	31.38	
4804.00	60.11	PK	H	-1.7	58.41	74	15.59	2nd Harmonic
	51.85	AVG	H		50.15	54	3.85	
7206.00	52.58	PK	H	3.0	55.58	74	18.42	3nd Harmonic
	40.14	AVG	H		43.14	54	10.86	
9608.40	43.47	PK	V	5.5	48.97	74	25.03	4nd Harmonic
	29.77	AVG	V		35.27	54	18.73	

- 1 GHz Above_Mid ch

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
4880.50	55.55	PK	H	-1.6	53.95	74	20.05	2nd Harmonic
	44.60	AVG	H		43.00	54	11.00	
7318.80	47.59	PK	H	2.7	50.29	74	23.71	3nd Harmonic
	34.41	AVG	H		37.11	54	16.89	
9760.80	42.00	PK	V	6.4	48.40	74	25.60	4nd Harmonic
	29.02	AVG	V		35.42	54	18.58	

- 1 GHz Above_High ch

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
2484.50	53.66	PK	H	-10.2	43.46	74	30.54	Restricted band
	36.51	AVG	H		26.31	54	27.69	
4960.00	62.00	PK	H	-1.5	60.50	74	13.50	2nd Harmonic
	53.55	AVG	H		52.05	54	1.95	
7438.80	50.49	PK	H	2.5	52.99	74	21.01	3nd Harmonic
	37.67	AVG	H		40.17	54	13.83	
9919.20	43.76	PK	H	5.8	49.56	74	24.44	4nd Harmonic
	31.47	AVG	H		37.27	54	16.73	

5. Test Result - Type A - LE (2 Mbps)

5.1. 6 dB Bandwidth

5.1.1 Test procedure

ANSI C63.10-2013 Clause 11.8

5.1.2 Limit

§15.247 (a) (2)
Systems using digital modulation techniques may operate in the $902-928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands. The minimum 6 dB bandwidth shall be at least 500 kHz .

5.1.3 Test data

Result : Pass

High ch_6 dB Bandwidth

5.2 Maximum Conducted Output Power

5.2.1 Test procedure

ANSI C63.10-2013 Clause 11.9

5.2.2 Limit

§15.247 (b) (3)
For systems using digital modulation in the $902-928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

5.2.3 Test data

Result : Pass

Mode	Frequency (MHz)	Measured Value (dBm)	Limit (dBm)
Bluetooth LE 2Mbps	2402	0.20	
	2440	0.58	30
	2480	0.78	

5.3 Power Spectral Density

5.3.1 Test procedure

ANSI C63.10-2013 Clause 11.10

5.3.2 Limit

§15.247 (e)
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

5.3.3 Test data

Result : Pass

5.4 Conducted Spurious Emission \& Band Edge

5.4.1 Test procedure

ANSI C63.10-2013 Clause 11.11, 11.13

5.4.2 Limit

§15.247 (d)
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

5.4.3 Test data

Result : Pass

5.5 Radiated Spurious Emission

5.5.1 Test procedure

ANSI C63.10-2013 Clause 11.11, 11.12

5.5.2 Limit

§15.247 (d)
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).
§15.209 Radiated emission limits; general requirements.(a)
Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30.0$	30	30
$30-88$	$100^{\star \star}$	3
$88-216$	$150 \star \star$	3
$216-960$	$200 \star \star$	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands $54-72 \mathrm{MHz}, 76-88$ $\mathrm{MHz}, 174-216 \mathrm{MHz}$ or $470-806 \mathrm{MHz}$. However, operation within these frequency bands is permitted under other sections of this part, e.g., $\S \S 15.231$ and 15.241.
§15.205 Restricted bands of operation.(a),(b)

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
${ }^{1} 0.495-0.505$	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	${ }^{(2)}$
13.36-13.41			

${ }^{1}$ Until February 1, 1999, this restricted band shall be $0.490-0.510 \mathrm{MHz}$.
${ }^{2}$ Above 38.6
Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in $\S 15.209$. At frequencies equal to or less than 1000 MHz , compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz , compliance with the emission limits in $\S 15.209$ shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

5.5.3 Test data

Result : Pass

- Below 30 MHz_Low ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
It was not found any emissions peaks found from the EUT.								

- Below 30 MHz Mid ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
It was not found any emissions peaks found from the EUT.								

- Below 30 MHz _High ch

| Frequency
 (MHz) | Reading
 $(\mathrm{dBuV} / \mathrm{m})$ | Detector | Pol. | Factor
 (dB) | Result
 $(\mathrm{dBuV} / \mathrm{m})$ | Limit
 $(\mathrm{dBuV} / \mathrm{m})$ | Margin
 $(\mathrm{dBuV} / \mathrm{m})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | note | (d) |
| :--- |

It was not found any emissions peaks found from the EUT.

- $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ _Low ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
36.402	51.89	QP	V	-25.6	26.29	40	13.71	
301.406	43.20	QP	H	-21.7	21.50	46	24.50	
359.994	48.93	QP	H	-20.1	28.83	46	17.17	
429.737	39.93	QP	H	-18.0	21.93	46	24.07	

- $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ Mid ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
37.469	51.40	QP	V	-25.2	26.20	40	13.80	
40.185	49.97	QP	V	-24.2	25.77	40	14.23	
359.994	49.21	QP	H	-20.1	29.11	46	16.89	
449.622	42.87	QP	H	-17.9	24.97	46	21.03	

$-30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ High ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
38.148	49.85	QP	V	-24.8	25.05	40	14.95	
41.155	47.76	QP	V	-23.9	23.86	40	16.14	
359.994	49.44	QP	H	-20.1	29.34	46	16.66	
469.313	41.63	QP	H	-17.4	24.23	46	21.77	

- 1 GHz Above_Low ch

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
2341.00	46.90	PK	H	-10.9	36.00	74	38.00	Restricted band
	33.67	AVG	H		22.77	54	31.23	
4805.00	60.21	PK	H	-1.7	58.51	74	15.49	2nd Harmonic
	43.31	AVG	H		41.61	54	12.39	
7207.20	42.81	PK	V	3.0	45.81	74	28.19	3nd Harmonic
	28.69	AVG	V		31.69	54	22.31	
9607.20	41.18	PK	V	5.4	46.58	74	27.42	4nd Harmonic
	27.22	AVG	V		32.62	54	21.38	

- 1 GHz Above_Mid ch

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
2989.50	55.56	PK	V	-7.0	48.56	74	25.44	Spurious Emission
	32.06	AVG	V		25.06	54	28.94	
4879.50	55.81	PK	H	-1.6	54.21	74	19.79	2nd Harmonic
	41.27	AVG	H		39.67	54	14.33	
7321.20	49.96	PK	H	2.7	52.66	74	21.34	3nd Harmonic
	34.86	AVG	H		37.56	54	16.44	
9759.60	40.79	PK	V	6.4	47.19	74	26.81	4nd Harmonic
	26.65	AVG	V		33.05	54	20.95	

- 1 GHz Above_High ch

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dBuV/m)	note
2484.50	56.55	PK	H	-10.2	46.35	74	27.65	Restricted band
	38.07	AVG	H		27.87	54	26.13	
4959.50	54.59	PK	H	-1.5	53.09	74	20.91	Restricted band
	40.11	AVG	H		38.61	54	15.39	
7438.80	52.19	PK	H	2.5	54.69	74	19.31	2nd Harmonic
	37.26	AVG	H		39.76	54	14.24	
9921.60	40.20	PK	H	5.8	46.00	74	28.00	3nd Harmonic
	26.04	AVG	H		31.84	54	22.16	

6. Test Result - Type A - LE (125 Kbps)

6.1. 6 dB Bandwidth

6.1.1 Test procedure

ANSI C63.10-2013 Clause 11.8

6.1.2 Limit

§15.247 (a) (2)
Systems using digital modulation techniques may operate in the $902-928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands. The minimum 6 dB bandwidth shall be at least 500 kHz .

6.1.3 Test data

Result : Pass

6.2 Maximum Conducted Output Power

6.2.1 Test procedure

ANSI C63.10-2013 Clause 11.9

6.2.2 Limit

§15.247 (b) (3)
For systems using digital modulation in the $902-928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

6.2.3 Test data

Result : Pass

Mode	Frequency (MHz)	Measured Value (dBm)	Limit (dBm)
Bluetooth LE 125 Kbps	2402	0.20	30
	2440	0.59	
	2480	0.80	

6.3 Power Spectral Density

6.3.1 Test procedure

ANSI C63.10-2013 Clause 11.10

6.3.2 Limit

§15.247 (e)
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

6.3.3 Test data

Result : Pass

6.4 Conducted Spurious Emission \& Band Edge

6.4.1 Test procedure

ANSI C63.10-2013 Clause 11.11, 11.13

6.4.2 Limit

§15.247 (d)
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

6.4.3 Test data

Result : Pass

6.5 Radiated Spurious Emission

6.5.1 Test procedure

ANSI C63.10-2013 Clause 11.11, 11.12

6.5.2 Limit

§15.247 (d)
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).
§15.209 Radiated emission limits; general requirements.(a)
Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30.0$	30	30
$30-88$	$100^{\star \star}$	3
$88-216$	$150 \star \star$	3
$216-960$	$200 \star \star$	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands $54-72 \mathrm{MHz}, 76-88$ $\mathrm{MHz}, 174-216 \mathrm{MHz}$ or $470-806 \mathrm{MHz}$. However, operation within these frequency bands is permitted under other sections of this part, e.g., $\S \S 15.231$ and 15.241.
§15.205 Restricted bands of operation.(a),(b)

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
${ }^{1} 0.495-0.505$	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	${ }^{(2)}$
13.36-13.41			

${ }^{1}$ Until February 1, 1999, this restricted band shall be $0.490-0.510 \mathrm{MHz}$.
${ }^{2}$ Above 38.6
Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in $\S 15.209$. At frequencies equal to or less than 1000 MHz , compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz , compliance with the emission limits in $\S 15.209$ shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

6.5.3 Test data

Result : Pass

- Below 30 MHz_Low ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
It was not found any emissions peaks found from the EUT.								

- Below 30 MHz_Mid ch

| Frequency
 (MHz) | Reading
 $(\mathrm{dBuV} / \mathrm{m})$ | Detector | Pol. | Factor
 (dB) | Result
 $(\mathrm{dBuV} / \mathrm{m})$ | Limit
 $(\mathrm{dBuV} / \mathrm{m})$ | Margin
 $(\mathrm{dBuV} / \mathrm{m})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | note | It was not found any emissions peaks found from the EUT. | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |

- Below 30 MHz _High ch

| Frequency
 (MHz) | Reading
 $(\mathrm{dBuV} / \mathrm{m})$ | Detector | Pol. | Factor
 (dB) | Result
 $(\mathrm{dBuV} / \mathrm{m})$ | Limit
 $(\mathrm{dBuV} / \mathrm{m})$ | Margin
 $(\mathrm{dBuV} / \mathrm{m})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | note | (d) |
| :--- |

It was not found any emissions peaks found from the EUT.

- $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ _Low ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
36.887	51.50	QP	V	-25.5	26.00	40	14.00	
359.994	49.21	QP	H	-20.1	29.11	46	16.89	
411.889	43.18	QP	H	-18.3	24.88	46	21.12	
442.056	42.62	QP	H	-17.9	24.72	46	21.28	

- $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ Mid ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
36.596	52.69	QP	V	-25.6	27.09	40	12.91	
38.439	50.01	QP	V	-24.7	25.31	40	14.69	
359.994	49.40	QP	H	-20.1	29.30	46	16.70	
471.059	41.89	QP	H	-17.3	24.59	46	21.41	

$-30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ _High ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
36.402	51.89	QP	V	-25.6	26.29	40	13.71	
359.994	49.48	QP	H	-20.1	29.38	46	16.62	
432.938	42.01	QP	H	-18.0	24.01	46	21.99	
474.939	42.44	QP	H	-17.2	25.24	46	20.76	

- 1 GHz Above_Low ch

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
2381.00	47.44	PK	H	-10.7	36.74	74	37.26	Restricted band
	33.64	AVG	H		22.94	54	31.06	
4804.00	60.36	PK	H	-1.7	58.66	74	15.34	2nd Harmonic
	53.54	AVG	H		51.84	54	2.16	
7204.80	48.90	PK	H	3	51.90	74	22.10	3nd Harmonic
	37.18	AVG	H		40.18	54	13.82	
9609.60	44.50	PK	H	5.5	50.00	74	24.00	4nd Harmonic
	32.03	AVG	H		37.53	54	16.47	

- 1 GHz Above_Mid ch

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
4879.50	58.99	PK	H	-1.6	57.39	74	16.61	2nd Harmonic
	50.64	AVG	H		49.04	54	4.96	
7318.80	47.54	PK	H	2.7	50.24	74	23.76	3nd Harmonic
	35.59	AVG	H		38.29	54	15.71	
9760.80	40.74	PK	H	6.4	47.14	74	26.86	4nd Harmonic
	27.28	AVG	H		33.68	54	20.32	

- 1 GHz Above_High ch

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
2490.50	49.28	PK	H	-10.2	39.08	74	34.92	Restricted band
	35.56	AVG	H		25.36	54	28.64	
4959.50	62.78	PK	H	-1.5	61.28	74	12.72	2nd Harmonic
	54.72	AVG	H		53.22	54	0.78	
7438.80	48.61	PK	H	2.5	51.11	74	22.89	3nd Harmonic
	37.19	AVG	H		39.69	54	14.31	
9920.40	47.83	PK	H	5.8	53.63	74	20.37	4nd Harmonic
	34.84	AVG	H		40.64	54	13.36	

7. Test Result - Type A - LE (500 Kbps)

7.1. 6 dB Bandwidth

7.1.1 Test procedure

ANSI C63.10-2013 Clause 11.8

7.1.2 Limit

§15.247 (a) (2)
Systems using digital modulation techniques may operate in the $902-928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands. The minimum 6 dB bandwidth shall be at least 500 kHz .

7.1.3 Test data

Result : Pass

7.2 Maximum Conducted Output Power

7.2.1 Test procedure

ANSI C63.10-2013 Clause 11.9

7.2.2 Limit

§15.247 (b) (3)
For systems using digital modulation in the $902-928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

7.2.3 Test data

Result : Pass

Mode	Frequency (MHz)	Measured Value (dBm)	Limit (dBm)
Bluetooth LE 500 Kbps	2402	0.20	30
	2440	0.58	
	2480	0.76	

High ch_Maximum Conducted Output Power

7.3 Power Spectral Density

7.3.1 Test procedure

ANSI C63.10-2013 Clause 11.10

7.3.2 Limit

§15.247 (e)
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

7.3.3 Test data

Result : Pass

7.4 Conducted Spurious Emission \& Band Edge

7.4.1 Test procedure

ANSI C63.10-2013 Clause 11.11, 11.13

7.4.2 Limit

§15.247 (d)
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

7.4.3 Test data

Result : Pass

7.5 Radiated Spurious Emission

7.5.1 Test procedure

ANSI C63.10-2013 Clause 11.11, 11.12

7.5.2 Limit

§15.247 (d)
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).
§15.209 Radiated emission limits; general requirements.(a)
Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30.0$	30	30
$30-88$	$100^{\star \star}$	3
$88-216$	$150^{\star \star}$	3
$216-960$	$200 \star \star$	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands $54-72 \mathrm{MHz}, 76-88$ $\mathrm{MHz}, 174-216 \mathrm{MHz}$ or $470-806 \mathrm{MHz}$. However, operation within these frequency bands is permitted under other sections of this part, e.g., $\S \S 15.231$ and 15.241.
§15.205 Restricted bands of operation.(a),(b)

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
${ }^{1} 0.495-0.505$	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	${ }^{(2)}$
13.36-13.41			

${ }^{1}$ Until February 1, 1999, this restricted band shall be $0.490-0.510 \mathrm{MHz}$.
${ }^{2}$ Above 38.6
Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in $\S 15.209$. At frequencies equal to or less than 1000 MHz , compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz , compliance with the emission limits in $\S 15.209$ shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

7.5.3 Test data

Result : Pass

- Below 30 MHz_Low ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
It was not found any emissions peaks found from the EUT.								

- Below 30 MHz Mid ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
It was not found any emissions peaks found from the EUT.								

- Below 30 MHz _High ch

| Frequency
 (MHz) | Reading
 $(\mathrm{dBuV} / \mathrm{m})$ | Detector | Pol. | Factor
 (dB) | Result
 $(\mathrm{dBuV} / \mathrm{m})$ | Limit
 $(\mathrm{dBuV} / \mathrm{m})$ | Margin
 $(\mathrm{dBuV} / \mathrm{m})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | note | (d) |
| :--- |

It was not found any emissions peaks found from the EUT.
$-30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ _Low ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
36.305	52.26	QP	V	-25.7	26.56	40	13.44	
293.937	43.20	QP	H	-21.8	21.40	46	24.60	
359.994	49.56	QP	H	-20.1	29.46	46	16.54	
456.606	42.05	QP	H	-17.8	24.25	46	21.75	

- $30 \mathrm{MHz} \sim 1$ GHz_Mid ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
36.596	52.38	QP	V	-25.6	26.78	40	13.22	
39.894	48.70	QP	V	-24.3	24.40	40	15.60	
359.994	51.19	QP	H	-20.1	31.09	46	14.91	
466.791	42.77	QP	H	-17.5	25.27	46	20.73	

$-30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ _High ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
36.499	51.30	QP	V	-25.6	25.7	40	14.30	
39.894	48.56	QP	V	-24.3	24.3	40	15.74	
359.994	49.46	QP	H	-20.1	29.4	46	16.64	
453.599	43.00	QP	H	-17.9	25.1	46	20.90	

- 1 GHz Above_Low ch

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
2351.00	48.46	PK	V	-10.9	37.56	74	36.44	Restricted band
	33.67	AVG	V		22.77	54	31.23	
2986.50	50.47	PK	V	-7.0	43.47	74	30.53	Spurious Emission
	32.12	AVG	V		25.12	54	28.88	
4804.00	60.18	PK	H	-1.7	58.48	74	15.52	2nd Harmonic
	50.79	AVG	H		49.09	54	4.91	
7204.80	47.37	PK	H	3.0	50.37	74	23.63	3nd Harmonic
	33.93	AVG	H		36.93	54	17.07	
9609.60	42.64	PK	V	5.5	48.14	74	25.86	4nd Harmonic
	28.33	AVG	V		33.83	54	20.17	

- 1 GHz Above_Mid ch

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin ($\mathrm{dBu} / \mathrm{m}$)	note
4881.00	55.70	PK	H	-1.6	54.10	74	19.90	2nd Harmonic
	43.17	AVG	H		41.57	54	12.43	
7321.20	50.65	PK	H	2.7	53.35	74	20.65	3nd Harmonic
	36.24	AVG	H		38.94	54	15.06	
9759.60	40.62	PK	V	6.4	47.02	74	26.98	4nd Harmonic
	26.90	AVG	V		33.30	54	20.70	

- 1 GHz Above_High ch

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dBuV/m)	note
2491.00	49.27	PK	V	-10.2	39.07	74	34.93	Restricted band
	33.99	AVG	V		23.79	54	30.21	
4960.50	60.46	PK	H	-1.5	58.96	74	15.04	2nd Harmonic
	49.88	AVG	H		48.38	54	5.62	
7438.80	52.96	PK	H	2.5	55.46	74	18.54	3nd Harmonic
	39.67	AVG	H		42.17	54	11.83	
9919.20	42.13	PK	H	5.8	47.93	74	26.07	4nd Harmonic
	28.67	AVG	H		34.47	54	19.53	

8. Test Result - Type B

8.1 Radiated Spurious Emission

8.1.1 Test procedure

ANSI C63.10-2013 Clause 11.11, 11.12

8.1.2 Limit

§15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § $15.205(\mathrm{c})$).
§15.209 Radiated emission limits; general requirements.(a)
Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
$1.705-30.0$	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands $54-72 \mathrm{MHz}, 76-88$ $\mathrm{MHz}, 174-216 \mathrm{MHz}$ or $470-806 \mathrm{MHz}$. However, operation within these frequency bands is permitted under other sections of this part, e.g., $\S \S 15.231$ and 15.241.		

§15.205 Restricted bands of operation.(a),(b)

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
${ }^{1} 0.495-0.505$	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	$9.0-9.2$
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

${ }^{1}$ Until February 1,1999 , this restricted band shall be $0.490-0.510 \mathrm{MHz}$.
${ }^{2}$ Above 38.6
Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz , compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz , compliance with the emission limits in $\S 15.209$ shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

8.1.3 Test data

Result : Pass

- Below 30 MHz Low ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note

It was not found any emissions peaks found from the EUT.

- Below 30 MHz Mid ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note

It was not found any emissions peaks found from the EUT.

- Below 30 MHz _High ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note

It was not found any emissions peaks found from the EUT.

* Tested in worst case (Bluetooth LE 1 Mbps)
- $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ _Low ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
45.035	33.18	QP	V	-23.2	9.98	40	30.02	
359.994	43.75	QP	H	-20.1	23.65	46	22.35	
420.425	40.95	QP	H	-18.1	22.85	46	23.15	
463.202	43.61	QP	H	-17.6	26.01	46	19.99	

$-30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ Mid ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
216.434	47.82	QP	H	-24.7	23.12	46	22.88	
246.019	42.06	QP	H	-22.9	19.16	46	26.84	
359.994	47.88	QP	H	-20.1	27.78	46	18.22	
435.654	43.04	QP	H	-17.9	25.14	46	20.86	

- $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ _High ch

Frequency (MHz)	Reading $(\mathrm{dBuV} / \mathrm{m})$	Detector	Pol.	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin $(\mathrm{dBuV} / \mathrm{m})$	note
243.497	43.09	QP	H	-23.0	20.09	46	25.91	
359.994	48.02	QP	H	-20.1	27.92	46	18.08	
420.716	43.56	QP	H	-18.1	25.46	46	20.54	
448.361	42.70	QP	H	-17.9	24.80	46	21.20	

* Tested in worst case (Bluetooth LE 1 Mbps)
- 1 GHz Above_Low ch

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
2350.50	47.32	PK	V	-12.0	35.32	74	38.68	Restricted band
	33.86	AVG	V		21.86	54	32.14	
4804.00	58.82	PK	H	-2.3	56.52	74	17.48	2nd Harmonic
	50.38	AVG	H		48.08	54	5.92	
7207.20	47.05	PK	H	2.1	49.15	74	24.85	3nd Harmonic
	33.09	AVG	H		35.19	54	18.81	
9608.40	41.17	PK	V	4.6	45.77	74	28.23	4nd Harmonic
	27.54	AVG	V		32.14	54	21.86	

- 1 GHz Above_Mid ch

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
4880.00	50.34	PK	H	-2.2	48.14	74	25.86	2nd Harmonic
	40.58	AVG	H		38.38	54	15.62	
7320.00	41.49	PK	H	2.0	43.49	74	30.51	3nd Harmonic
	27.89	AVG	H		29.89	54	24.11	
9760.80	40.98	PK	V	5.3	46.28	74	27.72	4nd Harmonic
	27.65	AVG	V		32.95	54	21.05	

- 1 GHz Above_High ch

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result ($\mathrm{dBuV} / \mathrm{m}$)	Limit (dBuV/m)	Margin (dBuV/m)	note
2487.50	48.49	PK	H	-11.2	37.29	74	36.71	Restricted band
	34.80	AVG	H		23.60	54	30.40	
4959.50	58.17	PK	H	-2.2	55.97	74	18.03	2nd Harmonic
	47.83	AVG	H		45.63	54	8.37	
7441.20	45.11	PK	V	2.2	47.31	74	26.69	3nd Harmonic
	31.03	AVG	V		33.23	54	20.77	
9919.20	40.96	PK	H	5.3	46.26	74	27.74	4nd Harmonic
	27.79	AVG	H		33.09	54	20.91	

* Tested in worst case (Bluetooth LE 1 Mbps)

8.1.4 Radiated Spurious Emission - Worst Case Plot

Result : Pass

* Tested in worst case (A Type - Bluetooth LE 125 Kbps - High ch)

* Tested in worst case (A Type - Bluetooth LE 125 Kbps - High ch)

* Tested in worst case (A Type - Bluetooth LE 125 Kbps - High ch)
page : (84) / Total (86)

8.2 Power Line Conducted Emission

8.2.1 Test procedure

ANSI C63.10-2013 Clause 6.2

8.2.2 Limit

§15.207 (a)
Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz , shall not exceed the limits in the following table, as measured using a $50 \mu \mathrm{H} / 50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission (MHz)	Conducted limit $(\mathrm{dB} \mu \mathrm{V})$	
	Quasi-peak	
$0.15-0.5$	66 to 56^{\star}	Average
$0.5-5$	56	56 to 46^{\star}
$5-30$	60	46

*Decreases with the logarithm of the frequency.

8.2.3 Test data

Result : Pass

9. Used equipment

	Description	Model Name	Manufacturer	Serial Number	Next Cal
\square	SIGNAL GENERATOR	SMB100A	R\&S	180607	$2025-02-27$
\square	SIGNAL ANALYZER	FSV30	R\&S	103030	$2025-02-27$
\square	DC BLOCK	PDCB-00012650-SMSF-3	PSATEK INC.	-	$2025-03-06$
\square	DC POWER SUPPLY	E3632A	AGILANT	MY51300069	$2025-02-27$
\square	LOOP ANTENNA	HFH2-Z2	R\&S	100271	$2025-03-08$
\square	BI-Log ANTENNA	VULB 9162	SCHWARZBECK	120	$2024-12-26$
\square	SIGNAL CONDITIONING UNIT	SCU 08	R\&S	100746	$2025-03-28$
\square	EMI TEST RECEIVER	ESR26	R\&S	101462	$2025-03-28$
\square	DOUBLE RIDGED HORN	HF907	R\&S	102556	$2024-08-04$
\square	SIGNAL CONDITIONING UNIT	SCU18	R\&S	102342	$2025-03-28$
\square	EMI TEST RECEIVER	ESR26	R\&S	101461	$2025-03-28$
\square	HORN ANTENNA	LB-42-10-C-KF	A-INFOMW	J202024625	$2025-03-12$
\square	PREAMPLIFIER	AMF-4F-18265- 35-8P-1	MITEQ	771846	$2025-03-06$

- END OF REPORT.

