

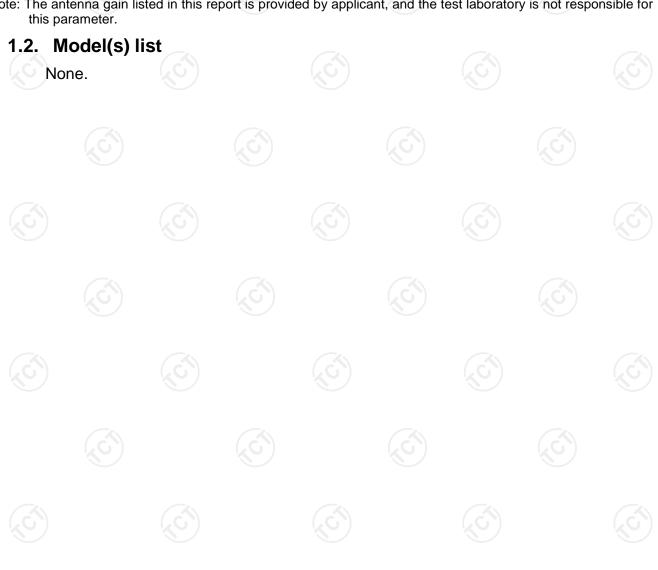
TESTING CENTRE TEC	TEST REPOR	 T					
FOC ID		<u> </u>					
FCC ID::	NBGFS197R						
Test Report No::	TCT231226E009						
Date of issue::	Feb. 05, 2024						
Testing laboratory:	SHENZHEN TONGCE TESTING	S LAB					
Testing location/ address:	2101 & 2201, Zhenchang Factor Fuhai Subdistrict, Bao'an District 518103, People's Republic of Ch	, Shenzhen, Guangdong,					
Applicant's name::	HELLA GmbH & Co. KGaA						
Address::	Rixbecker Strasse 75, Lippstadt	Rixbecker Strasse 75, Lippstadt D-59552, Germany					
Manufacturer's name:	HELLA GmbH & Co. KGaA						
Address::	Rixbecker Strasse 75, Lippstadt D-59552, Germany						
Factory's name:	HELLA GmbH & Co. KGaA						
Address::	Römerstraße 66 59075 Hamm G	ermany					
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.231						
Product Name::	Passive Entry-Passive Start Rad	io Identification Device					
Trade Mark:	HELLA						
Model/Type reference:	FS197R						
Rating(s)::	DC 3V	(c) (c)					
Date of receipt of test item:	Dec. 26, 2023						
Date (s) of performance of test:	Dec. 26, 2023 - Feb. 05, 2024						
Tested by (+signature):	Brews XU Preus Johnson						
Check by (+signature):	Beryl ZHAO						
Approved by (+signature):	Tomsin	Tomsitis st					

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

1.7	General Pro	duct Info	rmation					3
	1.1. EUT desc	ription		(0)		(0)		3
	1.2. Model(s)	list						3
2.	Test Result	Summar	y					4
3.	General Info	ormation.						5
	3.1. Test Envi	ronment a	nd Mode					5
	3.2. Description	on of Supp	ort Units.	<u> ((a)</u>		<u>(C)</u>		6
4.	Facilities ar							
	4.1. Facilities							
	4.2. Location		(0)		(0)		(0)	7
	4.3. Measurer	nent Uncer	tainty					7
5.	Test Result	s and Me	asureme	nt Data .				8
	5.1. Antenna	Requireme	nt					8
	5.2. Conducte	ed Emissio	n					9
	5.3. Radiated	Emission I	Measurem	nent	(6)		(10
	5.4. Manually	Activated '	Transmitt	er				23
	5.5. Occupied	Bandwidt	h					25
Ap	pendix A: Ph	otograph	ns of Tes	st Setup				
Ap	pendix B: Ph	otograph	ns of EU	Т				


1. General Product Information

Report No.: TCT231226E009

1.1. EUT description

Product Name:	Passive Entry-Passive Start Radio Identification Device				
Model/Type reference:	FS197R				
Sample Number:	TCT231226E009-0101				
Operation Frequency:	433.46MHz, 433.92MHz, 434.36MHz				
Modulation Technology:	FSK				
Antenna Type:	Integrated PCB loop Antenna				
Antenna Gain:	-23dBi				
Rating(s):	DC 3V				

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for

Page 3 of 29

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



2. Test Result Summary

Requirement	CFR 47 Section	Result		
Antenna Requirement	§15.203	PASS		
Conduction Emission, 0.15MHz to 30MHz	§15.207	PASS		
Manually Activated Transmitter	§15.231(a)	PASS		
Radiation Emission	§15.231(b), §15.205, §15.209, §15.35	PASS		
Occupied Bandwidth	§15.231(c)	PASS		

Note:

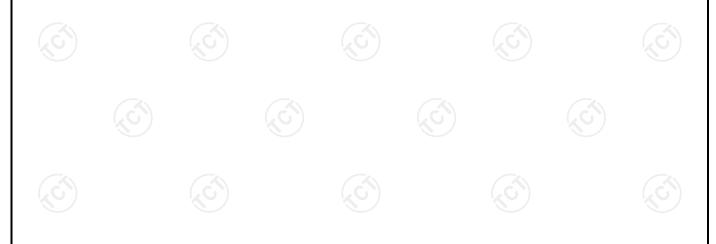
- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test Environment and Mode

Operating Environment:					
Condition	Radiated Emission				
Temperature:	24.2 °C				
Humidity: 51 % RH					
Test Mode:					
TM1:	Keep the EUT in transmitting with modulation	(c)			

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Y axis) are shown in Test Results of the following pages.

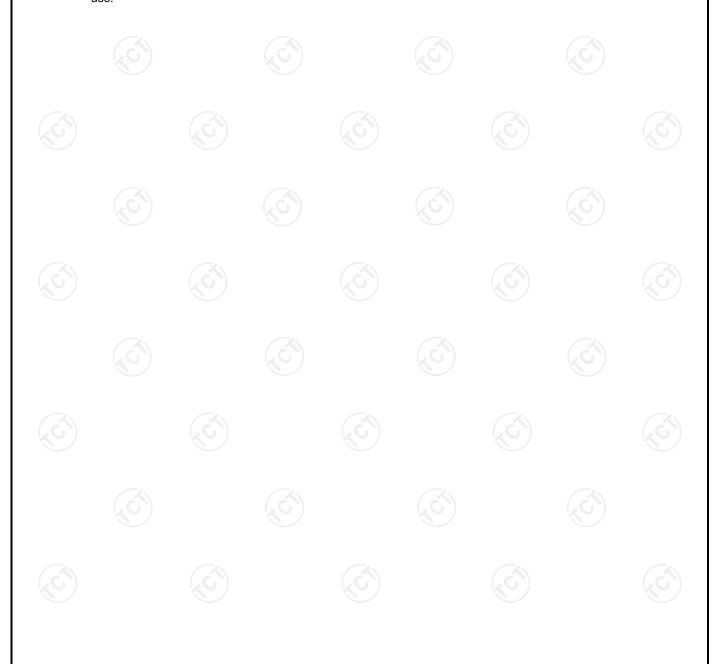

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	Х	Υ	Z
Field Strength(dBuV/m)	52.47	55.31	52.59

Final Test Mode:

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup": Y axis (see the test setup photo)


3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1	1	1	

Note: TPMS Service tool TBM0100 has passed FCC DoC test certification and meets the requirements of auxiliary device.

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB.

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	Occupied Bandwidth	± 0.25 KHz
5	All emissions, radiated(<1 GHz)	± 4.56 dB
6	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
7	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB
8	Temperature	± 0.1°C
9	Humidity	± 1.0%

Report No.: TCT231226E009

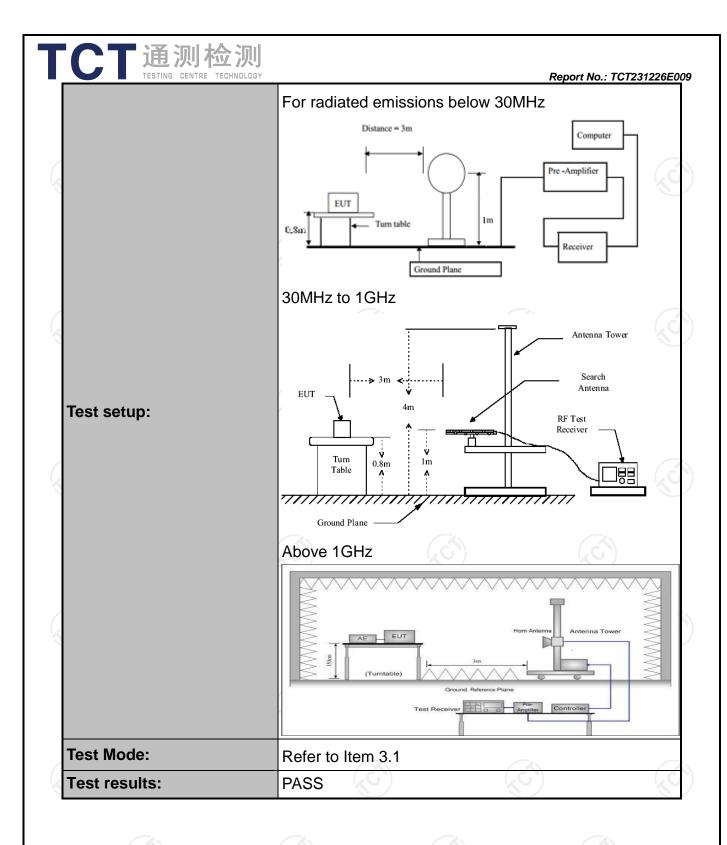
5. Test Results and Measurement Data

5.1. Antenna Requirement

Stand	dard requi	rement:	FCC Pa	rt15 C Sec	tion 15.203	3		
An int furnis perma intent can b	hed by the anently atta ional radia	diator shall responsibl ached anter tor, the mar by the use	e party sha nna or of a nufacturer	all be used In antenna may desig	with the de that uses a n the unit s	evice. The unique co o that a bro	e use of a oupling to that oken anten	ne
E.U.T	Antenna:							
		ntegrated F of the anten			ich permar	nently attac	hed, and the	ne
0031	base gain e	in the anten	Tid is 25di	<u> </u>				

5.2. Conducted Emission

5.2.1. Test Specification


Test Requirement:	FCC Part15 C Section	15.207	KC				
Test Method:	ANSI C63.4:2014						
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
Limits:	Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46 0.5-5 56 46 5-30 60 50						
Test Setup:	Reference Plane 40cm E.U.T AC power Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
Test Mode:	Charging + Transmittin	ng Mode					
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 						
Test Result:	Power supply is button battery, not applicable						

5.3. Radiated Emission Measurement

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.231(a) and 15.209				
Test Method:	ANSI C63.4:		•		
Frequency Range:	9 kHz to 5 G		X\		
Measurement Distance:	3 m		,)		((c))
Antenna Polarization:	Horizontal &	Vortical			
Antenna i Gianzation.		r.	DDW	A/D\A/	Damada
	Frequency 9kHz- 150kHz	Detector Quasi-peak	RBW 200Hz	VBW 1kHz	Remark Quasi-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value
•	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	Above 1GHz	Peak	1MHz	10Hz	Average Value
Test Procedure:	below 10 1GHz. T determine 2. The EU interferen on the top 3. The anter meters al value of vertical p the meas 4. For each s to its wor heights fr table was find the m 5. The test- Function Hold Mod 6. If the emi 10dB lowe be stopped reported. 0 10dB mar peak, quas	GHz, 1.5m The table the position The table the position The table the position The field the field toolarizations the field toolarizations the field toolarizations the field th	above was rot on of the et 3 m ag antenible-height is varied ound to a strength of the emission of the Emissio	the grotated 36 highest eters a na, which antenna from or determinated antenna from second as set to a second the second the sted one method as the second the sted one method as the second as the second the sted one method as the second the s	way from the h was mounted

5.3.2. Limit

Report	No.:	TCT231226E009
--------	------	---------------

Fundamental Frequency (MHz)	Filed Strength of Fundamental (microvolts/meter)	Filed Strength of Spurious Emission (microvolts/meter)		
40.66-40.70	2250	225		
70-130	1250	125		
130-174	1250 to 3750*	125 to 375*		
174-260	3750	375		
260-470	3750 to 12500*	375 to 1250*		
Above 470	12500	1250		
Horn Antenna	Schwarzbeck	BBHA 9120D		

^{*}Linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

For the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

For EUT

Fundamental Frequency (MHz)	Filed Strength of Fundamental (dBμV/m)	Filed Strength of Spurious Emission(dBµV/m)
433.46	80.81	60.81
433.92	80.83	60.83
434.36	80.84	60.84

Note:

- Intentional radiators operating under the provisions of this Section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions.
- 2.According to 15.35, on any frequency or frequencies below or equal to 1000 MHz, the limits Shown are based on measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths, unless otherwise specified the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test.
- 3. According to 15.231(b), The limits on the field strength of the spurious emissions in the above table is based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits one higher field strength.

Frequencies in restricted band are complied to limit on Paragraph 15.209

Frequency Range (MHz)	Distance (m)	Field strength (dBµV/m)
0.009-0.490	3	20log 2400/F (kHz) + 80
0.490-1.705	3	20log 24000/F (kHz) + 40
1.705-30	3	20log 30 + 40
30-88	3 (0)	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

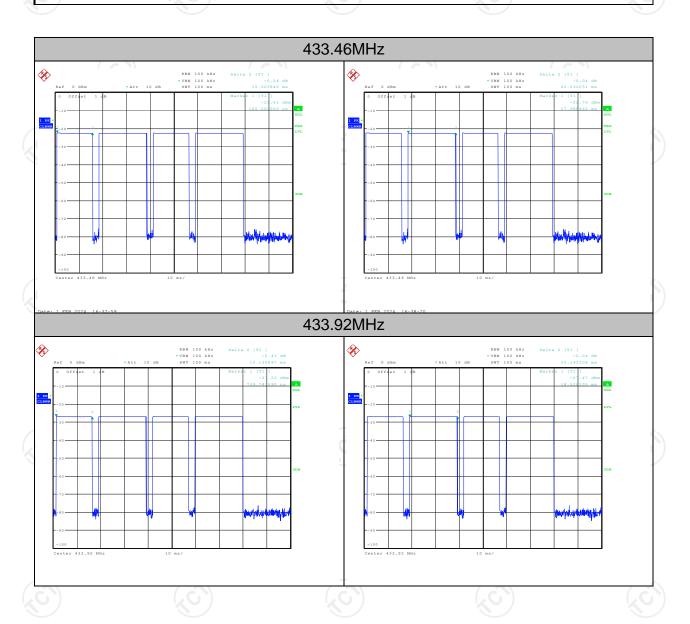
Note:

- 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT
- 4. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.
- 5. If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula Ld1 = Ld2 * (d2/d1)

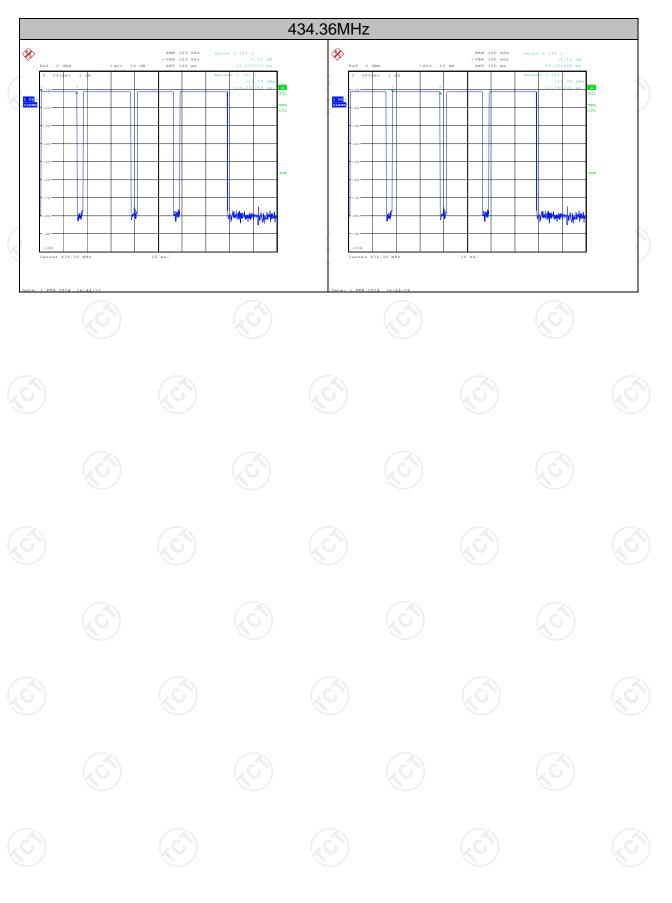
5.3.3. Test Instruments

	Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024				
Spectrum Analyzer	R&S	FSV40-N	102188	Feb. 20, 2024				
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 20, 2024				
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 20, 2024				
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024				
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024				
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024				
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024				
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 24, 2024				
Coaxial cable	SKET	RC-18G-N-M	1	Feb. 24, 2024				
Coaxial cable	SKET	RC_40G-K-M	1	Feb. 24, 2024				
EMI Test Software	Shurple Technology	EZ-EMC		1 6				

5.3.4. Test Data

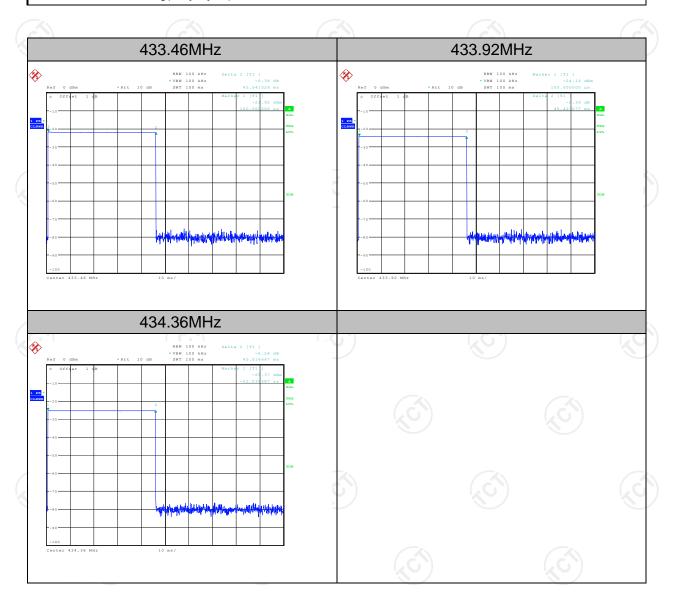

Duty Cycle Test Data:

PKE mode:


Frequency(MHz)	Max.T _{on} per 100ms (ms)	Duty Cycle	AV Factor(dB)
433.46	70.0	0.700	-3.10
433.92	70.4	0.704	-3.05
434.36	70.8	0.708	-3.00

Note:

Duty Cycle= T_{on} / 100ms AV Factor = 20 log(Duty Cycle)



RKE mode:

Frequency(MHz)	Max.T _{on} per 100ms (ms)	Duty Cycle	AV Factor(dB)	
433.46	45.5	0.455	-6.84	
433.92	45.4	0.454	-6.86	
434.36	45.5	0.455	-6.84	

Note:

Duty Cycle= T_{on} / 100ms AV Factor = 20 log(Duty Cycle)

Field Strength of Fundamental

PKE mode:

Frequency (MHz)	Emission PK (dBuV/m)	Horizontal /Vertical	Limits PK (dBuV/m)	Margin (dB)
433.46	80.57	Н	100.81	-20.24
433.46	61.48	V	100.81	-39.33
433.92	80.61	Н	100.83	-20.22
433.92	62.47	V	100.83	-38.36
434.36	80.71	(C)H	100.84	-20.13
434.36	62.69	V	100.84	-38.15

Frequency (MHz)	Emission PK (dBuV/m)	AV Factor(dB)	Horizontal /Vertical	Emission AVG (dBuV/m)	Limits AV (dBuV/m)	Margin (dB)
433.46	80.57	-3.10	H	77.47	80.81	-3.34
433.46	61.48	-3.10	V	58.38	80.81	-22.43
433.92	80.61	-3.05	Н	77.56	80.83	-3.27
433.92	62.47	-3.05	V	59.42	80.83	-21.41
434.36	80.71	-3.00	Н	77.71	80.84	-3.13
434.36	62.69	-3.00	V	59.69	80.84	-21.15

RKE mode

Frequency (MHz)	Emission PK (dBuV/m)	Horizontal /Vertical	Limits PK (dBuV/m)	Margin (dB)
433.46	80.59	(C)H	100.81	-20.22
433.46	63.69	V	100.81	-37.12
433.92	80.77	Н	100.83	-20.06
433.92	62.52	V 60	100.83	-38.31
434.36	80.59	Н	100.84	-20.25
434.36	62.83	V	100.84	-38.01

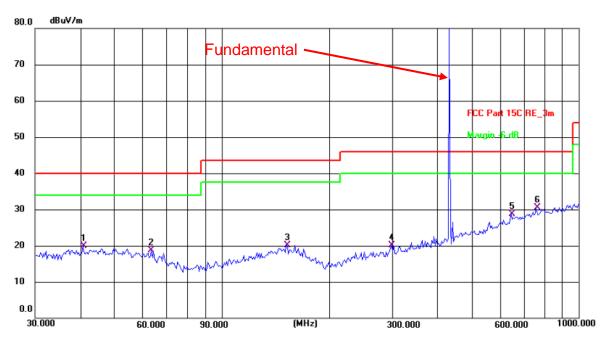
Frequency (MHz)	Emission PK (dBuV/m)	AV Factor(dB)	Horizontal /Vertical	Emission AVG (dBuV/m)	Limits AV (dBuV/m)	Margin (dB)
433.46	80.59	-6.84	Н	73.75	80.81	-7.06
433.46	63.69	-6.84	V	56.85	80.81	-23.96
433.92	80.77	-6.86	(C) H	73.91	80.83	-6.92
433.92	62.52	-6.86	V	55.66	80.83	-25.17
434.36	80.59	-6.84	Н	73.75	80.84	-7.09
434.36	62.83	-6.84	V	55.99	80.84	-24.85

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

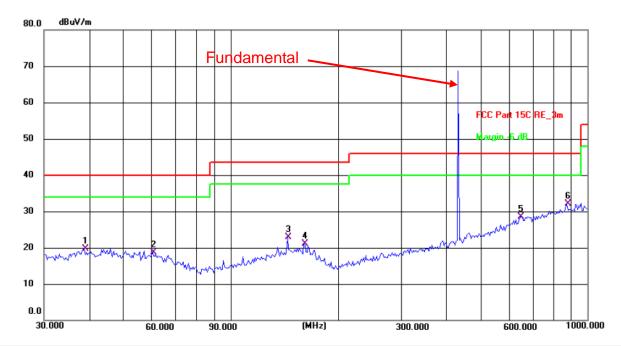
Frequency (MHz)	Level@	®3m (dBµ	V/m)	Limit@3m (dBµV/m)
				(%)
(, G')-	('Q')		('Q')	-(, Ġ`)
<u> </u>				

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor


2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Page 19 of 29

Below 1GHz


Site: #1 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.2(C) Humidity: 51 %

Limit: FCC Part 15C RE_3m Power: DC 3 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	40.8445	5.73	14.15	19.88	40.00	-20.12	QP	Р	
2	63.5356	6.45	12.33	18.78	40.00	-21.22	QP	Р	
3	151.5972	5.57	14.53	20.10	43.50	-23.40	QP	Р	
4	299.3158	6.03	13.98	20.01	46.00	-25.99	QP	Р	
5	647.3856	7.24	21.51	28.75	46.00	-17.25	QP	Р	
6 *	760.7035	7.82	22.69	30.51	46.00	-15.49	QP	Р	

Site: #1 3m Anechoic Chamber Polarization: Vertical Temperature: 24.2(C) Humidity: 51 %

Limit: FCC Part 15C RE_3m Power: DC 3 V

	1	1 /	1		I	1			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	38.8878	5.51	14.11	19.62	40.00	-20.38	QP	Р	
2	60.4918	5.79	12.83	18.62	40.00	-21.38	QP	Р	
3	144.3347	8.77	14.08	22.85	43.50	-20.65	QP	Р	
4	160.3456	6.54	14.55	21.09	43.50	-22.41	QP	Р	
5	647.3856	7.06	21.51	28.57	46.00	-17.43	QP	Р	
6 *	875.2469	7.92	24.10	32.02	46.00	-13.98	QP	Р	

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all channels (high, Middle, low), and the worst case Mode (Middle channel) was submitted only.
- 3. Freq. = Emission frequency in MHz
 Measurement (dBμV/m) = Reading level (dBμV) + Corr. Factor (dB)
 Correction Factor= Antenna Factor + Cable loss Pre-amplifier
 Limit (dBμV/m) = Limit stated in standard
 Margin (dB) = Measurement (dBμV/m) Limits (dBμV/m)
 Any value more than 10dB below limit have not been specifically reported

* is meaning the worst frequency has been tested in the test frequency range

Above 1GHz (PK value)

Frequency PK Value (MHz)	Read Level PK (dBuV)	Correction Factor (dB/m)	Level PK (dBuV/m)	Limit Line PK (dBuV/m)	Over Limit (dB)	Polarization
1301.76	64.43	-18.59	45.84	80.83	-34.99	Vertical
1735.68	55.16	-18.14	37.02	80.83	-43.81	Vertical
2169.60	53.91	-17.61	36.30	80.83	-44.53	Vertical
2603.52	50.49	-16.45	34.04	80.83	-46.79	Vertical
3037.44	49.42	-14.84	34.58	80.83	-46.25	Vertical
3471.36	47.27	-14.17	33.10	80.83	-47.73	Vertical
1301.76	61.34	-18.59	42.75	80.83	-38.08	Horizontal
1735.68	57.71	-18.14	39.57	80.83	-41.26	Horizontal
2169.60	56.06	-17.61	38.45	80.83	-42.38	Horizontal
2603.52	55.73	-16.45	39.28	80.83	-41.55	Horizontal
3037.44	54.98	-14.84	40.14	80.83	-40.69	Horizontal
3471.36	52.90	-14.17	38.73	80.83	-42.10	Horizontal

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (dB μ V/m)- limit (dB μ V/m)
- Measurements were conducted in all channels (high, Middle, low), and the worst case Mode (Middle channel) was submitted only.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. Data of measurement shown " * " in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

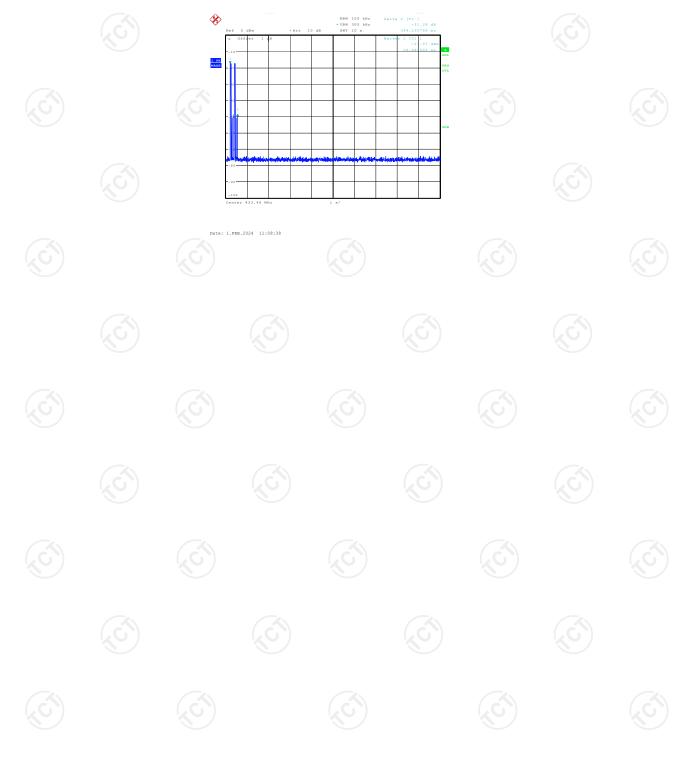
5.4. Manually Activated Transmitter

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.231(a)(1)	
Test Method:	ANSI C63.10: 2013		
Limit:	According to 15.231(a), A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released. 1. According to the follow Test-setup, keep the relative		
Test Procedure:	position between the position between the position between the position of the position of the position of the position of the position between the position	ne artificial antenna and the EUT. m power setting and enable the nuously. pectrum analyzer settings. BW≥RBW; Time > T(on)+5S;	
Test setup:	Spectrum Analyzer	EUT CO	
Test Mode:	Refer to Item 3.1		
Test results:	PASS		

5.4.2. Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Spectrum Analyzer	R&S	FSU	200054	Jun. 28, 2024			


ING CENTRE TECHNOLOGY Report No.: TCT231226E009

	^	T 1	data
~ /	~	IACT	Mata
		1631	uala

Test Channel (MHz)	Manually Activated Transmitter (s)	Limit (s)	Conclusion
433.46	0.34	5	PASS

Test plots as follows:

433.46MHz

5.5. Occupied Bandwidth

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.231C
Test Method:	ANSI C63.10: 2013
Limit:	According to 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the centre frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the centre frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test setup:	Spectrum Analyzer EUT
Test Mode:	Refer to Item 3.1
Test results:	PASS

5.5.2. Test Instruments

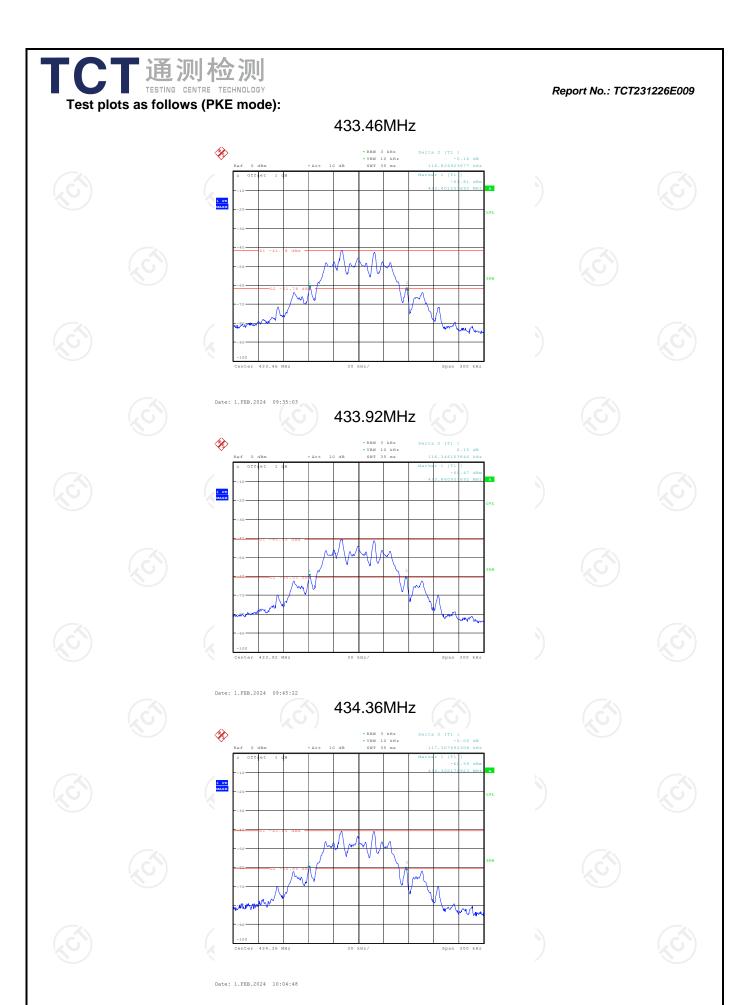
RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Spectrum Analyzer	R&S	FSU	200054	Jun. 28, 2024		

5.5.3. Test data

PKE mode

Test Channel (MHz)			Conclusion	
433.46	116.83	1083.65	PASS	
433.92	116.35	1084.80	PASS	
434.36	117.31	1085.90	PASS	

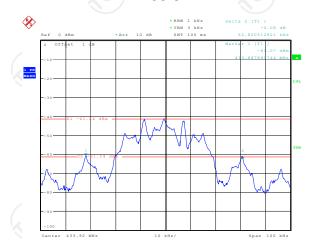
RKE mode


Test Channel (MHz)	20dB Occupy Bandwidth (kHz)	Limit (kHz)	Conclusion
433.46	62.98	1083.65	PASS
433.92	62.82	1084.80	PASS
434.36	62.82	1085.90	PASS

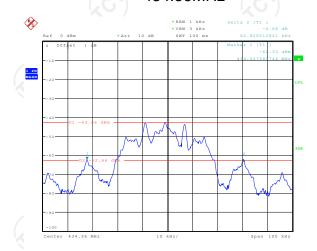
Note: Limit = 433.46MHz *0.25% = 1083.65 kHz, Limit = 433.92MHz *0.25% = 1084.80 kHz Limit = 434.36MHz *0.25% = 1085.90 kHz

Report No.: TCT231226E009

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Test plots as follows (RKE mode):

433.46MHz



433.92MHz

434.36MHz

Date: 1.FEB.2024 10:00:46

Report No.: TCT231226E009

Appendix A: Photographs of Test Setup

Report No.: TCT231226E009

Refer to the Appendix A

Appendix	B:	Photographs	of EUT
-----------------	----	--------------------	--------

Refer to the Appendix B

