

TEST REPORT

Applicant Name:	/Tech Telecommunications Ltd
Address: 2	23/F Tai Ping Ind Center Block 1 57 Ting Kok Rd Tai Po NT,
	Hong Kong
Report Number:	521240103-00576E-SAA
FCC ID:	-W780-H2B9-44
Test Standard (s)	
FCC 47 CFR part 2.1093	
Sample Description	
Product Type: S	SIP cordless hotel phone
Model No.: F	PMX-S5410
Multiple Model(s) No.: F	PMX-S5410 HC, PMX-S5410 HC-S, PMX-S5420, PMX-S5420
F	IC, PMX-S5420 HC-S
Trade Mark: v	rtech
Serial Number: 2	2G4S-12
Date Received: 2	2024/01/04
Date of Test: 2	2024/03/26
Issue Date: 2	2024/04/18
Test Result:	Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Sid Luo

Sid Luo SAR Engineer

Approved By:

Luke Trang

Luke Jiang SAR Engineer

Note: The information marked[#] is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "▼".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China

TR-EM-SA005

Page 1 of 59

Version 1.0 (2023/10/07)

Attestation of Test Results					
MODE Max. SAR Level(s) Reported(W/kg) Limit (Limit (W/kg)		
DECT	1g Head SAR	0.07	16		
DECI	1g BodySAR	0.07	1.0		
	FCC 47 CFR part 2. Radiofrequency radiat	1093 tion exposure evaluation: portable devices			
	RF Exposure Procedures: TCB WorkshopApril2019				
Applicable Standards	IEEE1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques				
KDB proceduresKDB 447498 D01 General RF Exposure Guidance v06KDB 648474 D04 Handset SAR v01r03KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04KDB 865664 D02 RF Exposure Reporting v01r02					
Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in FCC 47 CFR part 2.1093 and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures.					

The results and statements contained in this report pertain only to the device(s) evaluated.

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	
EUT DESCRIPTION	
TECHNICAL SPECIFICATION	
REFERENCE, STANDARDS, AND GUILDELINES	6
SAR LIMITS	
FACILITIES	7
DESCRIPTION OF TEST SYSTEM	
EQUIPMENT LIST AND CALIBRATION	
Equipment's List & Calibration Information	
SAR MEASUREMENT SYSTEM VERIFICATION	
LIQUID VERIFICATION SYSTEM ACCURACY VERIFICATION SAR SYSTEM VALIDATION DATA	
EUT TEST STRATEGY AND METHODOLOGY	
TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR CHEEK/TOUCH POSITION EAR/TILT POSITION TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS TEST DISTANCE FOR SAR EVALUATION SAR EVALUATION PROCEDURE	
CONDUCTED OUTPUT POWER MEASUREMENT	
Test Procedure Maximum Target Output Power Test Results:	
STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	
ANTENNAS LOCATION: Standalone SAR test exclusion considerations	
SAR MEASUREMENT RESULTS Test Results:	
SAR MEASUREMENT VARIABILITY	
SAR PLOTS	
APPENDIX A MEASUREMENT UNCERTAINTY	
APPENDIX B EUT TEST POSITION PHOTOS	
LIQUID DEPTH ≥ 15 CM HEAD LEFT CHEEKSETUP PHOTO (0 MM) HEAD LEFT TILTSETUP PHOTO (0 MM) HEAD RIGHT CHEEKSETUP PHOTO (0 MM) HEAD RIGHT TILTSETUP PHOTO (0 MM) BODY FRONTSETUP PHOTO (0 MM) BODY BACKSETUP PHOTO (0 MM)	39 40 40 41 41 41 42 42 42
APPENDIX C PROBE CALIBRATION CERTIFICATES	
APPENDIX D DIPOLE CALIBRATION CERTIFICATES	
APPENDIX E RETURN LOSS&IMPEDANCE MEASUREMENT	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	SZ1240103-00576E-SAA	Original Report	2024/04/18	

EUT DESCRIPTION

This report has been prepared on behalf of **VTech Telecommunications Ltd** and their product **SIP cordless hotel phone**, Test Model: **PMX-S5410**, FCC ID: **EW780-H2B9-44** or the EUT (Equipment under Test) as referred to in the rest of this report.

**All measurement and test data in this report was gathered from production sample serial number*:2G4S-12(*Assigned by BACL, Shenzhen*).*The EUT supplied by the applicant was received on 2024-01-04.*

Technical Specification

Product Type:	Portable	
Exposure Category:	Population / Uncontrolled	
Antenna Type(s):	Internal Antenna	
Body-Worn Accessories:	None	
Operation modes:	DECT	
Frequency Band:	DECT:1921.536-1928.448 MHz;	
Modulation Technique:	GFSK	
Conducted RF Power: DECT: 19.94 dBm		
Power Source:	DC 3.7V from battery	
Normal Operation:	Headand Body	
Note: The Multiple models are electrically identical with the test model except for model name, base and charger.		
Please refer to the declaration letter [#] for more detail, which was provided by manufacturer.		

REFERENCE, STANDARDS, AND GUILDELINES

FCC:

- The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.
- This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

SAR Limits

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)	
Spatial Average (averaged over the whole body)	0.08	0.4	
Spatial Peak (averaged over any 1 g of tissue)	1.6	8.0	
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0	

FCC Limit(1g Tissue)

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that maybe incurred by people who are aware of the potential for exposure (i.e. as a result of employmentor occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg for 1g SAR applied to the EUT.

FACILITIES

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect data is located at 5F(B-West) ,6F,7F,the 3rd Phase of Wan Li Industrial Building D,Shihua Rd, FuTian Free Trade Zone, Shenzhen, China

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 715558, the FCC Designation No.: CN5045.

Each test item follows test standards and with no deviation.

DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY6 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY6 System Description

The DASY6 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY6 Measurement Server

The DASY6 measurement server is based on a PC/104 CPU board with a 400 MHz Intel ULV Celeron, 128 MB chip-disk and 128 MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16-bit AD converter system for optical detection and digital I/O interface are contained on the DASY6 I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluations of field

measurements and surface detection, controls robot movements, and handles safety operations. The PC operating system cannot interfere with these time-critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program- controlled robot movements. Furthermore, the measurement server is equipped with an expansion port, which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Connection of devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

EX3DV4 E-Field Probes

Frequency	4 MHz to >10 GHz Linearity: ± 0.2 dB (30 MHz to 10 GHz)
Directivity	\pm 0.1 dB in TSL (rotation around probe axis) \pm 0.3 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: \pm 0.2 dB (noise: typically< 1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY6, EASY4/MRI

SAM Twin Phantom

The SAM Twin Phantom (shown in front of DASY6) is a fiberglass shell phantom with shell thickness 2 mm, except in the ear region where the thickness is increased to 6 mm. The phantom has three measurement areas: 1) Left Head, 2) Right Head, and 3) Flat Section. For larger devices, the use of the ELI-Phantom (shown behind DASY6) is required. For devices such as glasses with a wireless link, the Face Down Phantom is the most suitable (between the SAM Twin and ELI phantoms).

When the phantom is mounted inside allocated slot of the DASY6 platform, phantom reference points can be taught directly in the DASY5 V5.2software. When the DASY6 platform is used to mount the

Phantom, some of the phantom teaching points cannot be reached by the robot in DASY5 V5.2. A special tool called P1a-P2aX-Former is provided to transform two of the three points, P1 and P2, to reachable locations. To use these new teaching points, a revised phantom configuration file is required.

In addition to our standard broadband liquids, the phantom can be used with the following tissue simulating liquids:

Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation.

DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week).

Do not use other organic solvents without previously testing the solvent resistivity of the phantom. Approximately 25 liters of liquid is required to fill the SAM Twin phantom.

ELI Phantom

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6 GHz. ELI is fully compatible with the latest draft of the standardIEEE1528:2013 and the use of all known tissue simulating liquids. ELI has been optimized for performance and can be integrated into a SPEAG standard phantom table. A cover is provided to prevent evaporation of water and changes in liquid parameters. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points.

The phantom can be used with the following tissue simulating liquids:

• Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation.

- DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week).
- Do not use other organic solvents without previously testing the solvent resistivity of the phantom.

Approximately 25 liters of liquid is required to _fill the ELI phantom.

Robots

The DASY6 system uses the high-precision industrial robots TX60L, TX90XL, and RX160L from Staubli SA (France). The TX robot family - the successor of the well-known RX robot family - continues to offer the features important for DASY6 applications:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchrony motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

The robots are controlled by the Staubli CS8c robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is provided.

Calibration Frequency	Frequency Range(MHz)		Conversion Factor		
Point(MHz)	From	То	X	Y	Z
750 Head	650	850	10.65	10.65	10.65
900 Head	850	1000	10.19	10.19	10.19
1750 Head	1650	1850	8.60	8.60	8.60
1900 Head	1850	2000	8.30	8.30	8.30
2300 Head	2200	2400	8.16	8.16	8.16
2450 Head	2400	2550	7.89	7.89	7.89
2600 Head	2550	2700	7.65	7.65	7.65
3300 Head	3200	3400	7.39	7.39	7.39
3500 Head	3400	3600	7.24	7.24	7.24
3700 Head	3600	3800	7.10	7.10	7.10
3900 Head	3800	4000	6.98	6.98	6.98
5250 Head	5140	5360	5.62	5.62	5.62
5500 Head	5390	5610	5.10	5.10	5.10
5750 Head	5640	5860	5.08	5.08	5.08

Calibration Frequency Points for EX3DV4 E-Field Probes SN: 7382 Calibrated: 2023/09/27

SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the deviceunder test in the batch process. The minimum distance of probe sensors to surface determines the closestmeasurement point to phantom surface. The minimum distance of probe sensors to surface is 1.4 mm. This distancecannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scans

Area scans are defined prior to the measurementprocess being executed with a user definedvariable spacing between each measurementpoint (integral) allowing low uncertaintymeasurements to be conducted. Scans defined for FCC applications utilize a 15mm2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$	
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m^3 is used to represent the head and body tissue density and not the phantomliquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 5mm, with the side length of the 10g cube is 21.5mm.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ $3 - 4 \text{ GHz}: \leq 5 \text{ mm}$ $2 - 3 \text{ GHz}: \leq 5 \text{ mm}^*$ $4 - 6 \text{ GHz}: \leq 4 \text{ mm}$		
uni Maximum zoom scan spatial resolution, normal to phantom surface gra grid	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	$\begin{array}{c} \Delta z_{Zoom}(n > 1): \\ \text{between subsequent} \\ \text{points} \end{array}$		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$	
Minimum zoom scan volume	x, y, z		≥ 30 mm	$3 - 4 \text{ GHz}: \ge 28 \text{ mm}$ $4 - 5 \text{ GHz}: \ge 25 \text{ mm}$ $5 - 6 \text{ GHz}: \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the *area scan based 1-g SAR estimation* procedures of KDB Publication 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power referencemeasurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user tomonitor the power drift of the device under test within a batch process. The measurement procedure is the same asStep 1.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE1528:2013

Recommended Tissue Dielectric Parameters for Head liquid

Table A.3 - Dielectric properties of the head tissue-equivalent liquid

Frequency	Relative permittivity	Conductivity (<i>o</i>)
MHz	ε _r	S/m
300	45,3	0,87
450	43,5	0,87
750	41,9	0,89
835	41,5	0,90
900	41,5	0,97
1 450	40,5	1,20
1 500	40,4	1,23
1 640	40,2	1,31
1 750	40,1	1,37
1 800	40,0	1,40
1 900	40,0	1,40
2 000	40,0	1,40
2 100	39,8	1,49
2 300	39,5	1,67
2 450	39,2	1,80
2 600	39,0	1,96
3 000	38,5	2,40
3 500	37,9	2,91
4 000	37,4	3,43
4 500	36,8	3,94
5 000	36,2	4,45
5 200	36,0	4,66
5 400	35,8	4,86
5 600	35,5	5,07
5 800	35,3	5,27
6 000	35,1	5,48

NOTE For convenience, permittivity and conductivity values at those frequencies which are not part of the original data provided by Drossos et al. [33] or the extension to 5 800 MHz are provided (i.e. the values shown *in italics*). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6 000 MHz that were linearly extrapolated from the values at 3 000 MHz and 5 800 MHz.

EQUIPMENT LIST AND CALIBRATION

Equipment's List & Calibration Information

Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52 52.10.2	N/A	NCR	NCR
DASY6 Measurement Server	DASY6 6.0.31	N/A	NCR	NCR
Data Acquisition Electronics	DAE4	1325	2023/09/27	2024/09/26
E-Field Probe	EX3DV4	7382	2023/09/27	2024/09/26
Mounting Device	MD4HHTV5	SD 000 H01 KA	NCR	NCR
SAM Twin Phantom	SAM-Twin V8.0	1962	NCR	NCR
Dipole,1900MHz	D1900V2	5d231	2023/02/17	2026/02/16
Simulated Tissue Liquid Head	HBBL600-10000V6	180622-2	Each Time	/
Network Analyzer	E5071C	SER MY46519680	2023/06/08	2024/06/07
Dielectric Assessment Kit	DAK-3.5	1248	NCR	NCR
MXG Analog Signal Generator	N5181A	MY48180408	2024/01/16	2025/01/15
USB wideband power sensor	U2021XA	MY52350001	2023/06/08	2024/06/07
Directional Coupler	855673	3307	NCR	NCR
20dB Attenuator	2	BH9879	NCR	NCR
RF Power Amplifier	5205FE	1014	NCR	NCR
Digital Radio Communication Tester	CMD60	830553/018	2023/06/08	2024/06/07
Temperature & Humidity Meter	DTM3000	N/A	2024/01/16	2025/01/15

NCR:No Calibration Required.

SAR MEASUREMENT SYSTEM VERIFICATION

Liquid Verification

Liquid Verification Setup Block Diagram

Liquid Verification Results

Frequency	Liquid	Liq Para	uid ameter	Target	Value	De (%	lta ⁄o)	Tolerance
(MHz)	Туре	٤ _r	0 (S/m)	٤ _r	0 (S/m)	$\Delta \epsilon_r$	ΔƠ (S/m)	(%)
1900	Simulated Tissue Liquid Head	39.450	1.379	40.00	1.40	-1.37	-1.50	±5
1921.54	Simulated Tissue Liquid Head	39.361	1.379	40.00	1.40	-1.60	-1.50	±5
1924.99	Simulated Tissue Liquid Head	39.347	1.379	40.00	1.40	-1.63	-1.50	±5
1928.45	Simulated Tissue Liquid Head	39.333	1.379	40.00	1.40	-1.67	-1.50	±5

*Liquid Verification above was performed on 2024/03/26.

System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The spacing distances in the System Verification Setup Block Diagram is given by the following:

- a) $s=15\ mm\pm0.2\ mm$ for 300 MHz $\leq f\leq1$ 000 MHz;
- b) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 1 000 MHz < f \leq 3 000 MHz;
- c) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 3 000 MHz < f \leq 6 000 MHz.

System Verification Setup Block Diagram

System Accuracy Check Results

Date	Frequency Band (MHz)	Liquid Type	Input Power (mW)	Mea S. (W	sured AR //kg)	Normalized to 1W (W/kg)	Target Value (W/Kg)	Delta (%)	Tolerance (%)
2024/03/26	1900	Head	100	1g	3.73	37.3	39.9	-6.516	±10

Note:

All the SAR values are normalized to 1Watt forward power.

SAR SYSTEM VALIDATION DATA

System Performance 1900 MHz Head

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d231

Communication System: UID 0, CW (0); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.379$ S/m; $\epsilon_r = 39.45$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7382; ConvF(8.3, 8.3, 8.3) @ 1900 MHz;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1325; Calibrated: 9/27/2023
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Configuration/Head 1900MHz Pin=100mW/Area Scan (9x13x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 5.85 W/kg

Configuration/Head 1900MHz Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm Reference Value = 57.00 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 7.00 W/kg SAR(1 g) = 3.73 W/kg; SAR(10 g) = 1.92 W/kg

Maximum value of SAR (measured) = 5.84 W/kg

0 dB = 5.84 W/kg = 7.66 dBW/kg

EUT TEST STRATEGY AND METHODOLOGY

Test Positions for Device Operating Next to a Person's Ear

This category includes most wireless handsets with fixed, retractable or Internal Antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper 1/4 of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear reference point" (left and right) and the tip of the mouth.

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:

Cheek/Touch Position

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.

This test position is established:

When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.

- (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.
- For existing head phantoms when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

Cheek /Touch Position

Ear/Tilt Position

With the handset aligned in the "Cheek/Touch Position":

1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.

2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point isby 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tilt/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

Bay Area Compliance Laboratories Corp.(Shenzhen)

Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Figure 5 – Test positions for body-worn devices

Test Distance for SAR Evaluation

In this case the EUT (Equipment Under Test) is set directly against the phantom, the test distance is 0 mm.

SAR Evaluation Procedure

The evaluation was performed with the following procedure:

- Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.
- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.
 - All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

CONDUCTED OUTPUT POWER MEASUREMENT

Test Procedure

The RF output of the transmitter was connected to the input of the Digital Radio Communication Tester.

Maximum Target Output Power

	Max Target Power(dBm)					
Mada/Dand						
Wode/Band	Low	Middle	High			
DECT	20.2	20.2	20.2			

Test Results:

DECT:

Mode	Frequency (MHz)	RF Output Peak Power (dBm)
	1921.536	19.94
DECT	1924.992	19.77
	1928.448	19.75

Note:

- 1. Rohde & Schwarz Radio Communication Tester (CMD60) was used for the measurement of DECT peak output power.
- 2. The DECT output peak power is from Radio report.
- 3. Duty Cycle=1:25.2 (0.0397).
- 4. The EUT belongs to a low duty cycle device.
- 5. Per IEEE1528:2013, 1 Channel shall be tested; the middle channel was selected to test:

$N_{\rm c} = Round \left\{ \left[100 (f_{\rm high} - f_{\rm low}) / f_{\rm c} \right]^{0.5} \times (f_{\rm c} / 100)^{0.2} \right\},\$

where f_{high} is the highest frequency in the band and f_{low} , is the lowest f_c is the center frequency in the band. At the same time, we chose the worst mode to carry out additional testing on other channels.

ProjectNo.:SZ1240103-00576E-PP Tester:Bruce Lin Date: 25.MAR.2024 22:18:39

STANDALONE SAR TEST EXCLUSION CONSIDERATIONS

Antennas Location:

EUT Back View

Standalone SAR test exclusion considerations

Mode	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Distance (mm)	Calculated value	Threshold (1-g)	SAR Test Exclusion
DECT	1928.448	20.2	104.71	0	29.1	3	NO

NOTE:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $\left[\sqrt{f(GHz)}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

Test Results:

Environmental Conditions:

Temperature:	21.6 ~ 23.2°C
Relative Humidity:	$40 \sim 59\%$
ATM Pressure:	101.3 kPa
Test Date:	2024/03/26

* Testing was performed by Sid Luo.

DECTMode:

			Max.	Max.		1g SA	R (W/Kg)		
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Limit	Plot
	1921.536	GFSK	19.94	20.2	1.062	0.039	0.05	1.6	1#
Head Left Cheek	1924.992	GFSK	19.77	20.2	1.104	0.056	0.07	1.6	2#
	1928.448	GFSK	19.75	20.2	1.109	0.041	0.05	1.6	3#
	1921.536	GFSK	/	/	/	/	/	1.6	/
Head Left Tilt	1924.992	GFSK	19.77	20.2	1.104	0.026	0.03	1.6	4#
	1928.448	GFSK	/	/	/	/	/	1.6	/
	1921.536	GFSK	/	/	/	/	/	1.6	/
Head Right Cheek	1924.992	GFSK	19.77	20.2	1.104	0.026	0.03	1.6	5#
	1928.448	GFSK	/	/	/	/	/	1.6	/
	1921.536	GFSK	/	/	/	/	/	1.6	/
Head Right Tilt	1924.992	GFSK	19.77	20.2	1.104	0.021	0.03	1.6	6#
	1928.448	GFSK	/	/	/	/	/	1.6	/
D. 1. F	1921.536	GFSK	19.94	20.2	1.062	0.056	0.06	1.6	7#
BodyFront (0 mm)	1924.992	GFSK	19.77	20.2	1.104	0.059	0.07	1.6	8#
(0 mm)	1928.448	GFSK	19.75	20.2	1.109	0.057	0.07	1.6	9#
	1921.536	GFSK	/	/	/	/	/	1.6	/
BodyBack (0 mm)	1924.992	GFSK	19.77	20.2	1.104	0.053	0.06	1.6	10#
(o mm)	1928.448	GFSK	/	/	/	/	/	1.6	/

Note:

1. When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional. 2. When SAR or MPE is not measured at the maximum power level allowed for production to the individual channels tested to determine compliance.

SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results:

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The Highest Measured SAR Configuration in Each Frequency Band

Head

SAR probe Frequency Freq (MHz) EUT Post		EUT Desition	Meas. SA	Largest to		
calibration point	Band	Freq.(MHZ)	(MHz) EUT Position	Original	Repeated	Smallest SAR Ratio
/	/	/	/	/	/	/

Body

SAR probe Frequency Freq.(MHz) EUT Position			Meas. SA	AR (W/kg)	Largest to		
calibration point	Band	Freq.(MHZ)	q.(MHz) EUT Position	Original	Repeated	Smallest SAR Ratio	
/	/	/	/	/	/	/	

Note:

1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required.

3. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe calibration point and tissue-equivalent medium** used for the device measurements.

SAR Plots

Plot: 1#

DUT: SIP cordless hotel phone; Type: PMX-S5410; Serial: 2G4S-12

Communication System: UID 0, DECT (0); Frequency: 1921.54 MHz;Duty Cycle: 1:25.2 Medium parameters used: f = 1921.54 MHz; $\sigma = 1.379$ S/m; $\epsilon_r = 39.361$; $\rho = 1000$ kg/m³ Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7382; ConvF(8.3, 8.3, 8.3) @ 1921.54 MHz;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1325; Calibrated: 9/27/2023
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Head Left Cheek/DECT Low/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0599 W/kg

Head Left Cheek/DECT Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.383 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.0740 W/kg

SAR(1 g) = 0.039 W/kg; SAR(10 g) = 0.014 W/kg

Maximum value of SAR (measured) = 0.0577 W/kg

0 dB = 0.0577 W/kg = -12.39 dBW/kg

Plot: 2#

DUT: SIP cordless hotel phone; Type: PMX-S5410; Serial: 2G4S-12

Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:25.2 Medium parameters used: f = 1924.99 MHz; $\sigma = 1.379$ S/m; $\epsilon_r = 39.347$; $\rho = 1000$ kg/m³ Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7382; ConvF(8.3, 8.3, 8.3) @ 1924.99 MHz;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1325; Calibrated: 9/27/2023
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA ; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Head Left Cheek/DECT Mid/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0538 W/kg

Head Left Cheek/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.295 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.158 W/kg

SAR(1 g) = 0.056 W/kg; SAR(10 g) = 0.021 W/kg

Maximum value of SAR (measured) = 0.0576 W/kg

0 dB = 0.0576 W/kg = -12.40 dBW/kg

Plot: 3#

DUT: SIP cordless hotel phone; Type: PMX-S5410; Serial: 2G4S-12

Communication System: UID 0, DECT (0); Frequency: 1928.45 MHz;Duty Cycle: 1:25.2 Medium parameters used: f = 1928.45 MHz; $\sigma = 1.379$ S/m; $\epsilon_r = 39.333$; $\rho = 1000$ kg/m³ Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7382; ConvF(8.3, 8.3, 8.3) @ 1928.45 MHz;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1325; Calibrated: 9/27/2023
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Head Left Cheek/DECT High/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0611 W/kg

Head Left Cheek/DECT High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.402 V/m; Power Drift = -0.08 dB

Reference value = 3.402 v/m, 10wer D/m = -0.

Peak SAR (extrapolated) = 0.0730 W/kg

SAR(1 g) = 0.041 W/kg; SAR(10 g) = 0.023 W/kg

Maximum value of SAR (measured) = 0.0600 W/kg

0 dB = 0.0600 W/kg = -12.22 dBW/kg

TR-EM-SA005

Plot: 4#

DUT: SIP cordless hotel phone; Type: PMX-S5410; Serial: 2G4S-12

Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:25.2 Medium parameters used: f = 1924.99 MHz; $\sigma = 1.379$ S/m; $\epsilon_r = 39.347$; $\rho = 1000$ kg/m³ Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7382; ConvF(8.3, 8.3, 8.3) @ 1924.99 MHz;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1325; Calibrated: 9/27/2023
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Head Left Tilt/DECT Mid/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0374 W/kg

Head Left Tilt/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.400 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.0460 W/kg

SAR(1 g) = 0.026 W/kg; SAR(10 g) = 0.015 W/kg

Maximum value of SAR (measured) = 0.0363 W/kg

0 dB = 0.0363 W/kg = -14.40 dBW/kg

Plot: 5#

DUT: SIP cordless hotel phone; Type: PMX-S5410; Serial: 2G4S-12

Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:25.2 Medium parameters used: f = 1924.99 MHz; $\sigma = 1.379$ S/m; $\epsilon_r = 39.347$; $\rho = 1000$ kg/m³ Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7382; ConvF(8.3, 8.3, 8.3) @ 1924.99 MHz;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1325; Calibrated: 9/27/2023
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Head Right Cheek/DECT Mid/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0381 W/kg

Head Right Cheek/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.712 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.0450 W/kg

SAR(1 g) = 0.026 W/kg; SAR(10 g) = 0.014 W/kg

Maximum value of SAR (measured) = 0.0375 W/kg

0 dB = 0.0375 W/kg = -14.26 dBW/kg

Plot: 6#

DUT: SIP cordless hotel phone; Type: PMX-S5410; Serial: 2G4S-12

Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:25.2 Medium parameters used: f = 1924.99 MHz; $\sigma = 1.379$ S/m; $\epsilon_r = 39.347$; $\rho = 1000$ kg/m³ Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7382; ConvF(8.3, 8.3, 8.3) @ 1924.99 MHz;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1325; Calibrated: 9/27/2023
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Head Right Tilt/DECT Mid/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0288 W/kg

Head Right Tilt/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.713 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.0370 W/kg

SAR(1 g) = 0.021 W/kg; SAR(10 g) = 0.012 W/kg

Maximum value of SAR (measured) = 0.0303 W/kg

0 dB = 0.0303 W/kg = -15.19 dBW/kg

Plot: 7#

DUT: SIP cordless hotel phone; Type: PMX-S5410; Serial: 2G4S-12

Communication System: UID 0, DECT (0); Frequency: 1921.54 MHz;Duty Cycle: 1:25.2 Medium parameters used: f = 1921.54 MHz; $\sigma = 1.379$ S/m; $\epsilon_r = 39.361$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7382; ConvF(8.3, 8.3, 8.3) @ 1921.54 MHz;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1325; Calibrated: 9/27/2023
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Body Front/DECT Low/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0818 W/kg

Body Front/DECT Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.075 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.115 W/kg

SAR(1 g) = 0.056 W/kg; SAR(10 g) = 0.028 W/kg

Maximum value of SAR (measured) = 0.0885 W/kg

0 dB = 0.0885 W/kg = -10.53 dBW/kg

Plot: 8#

DUT: SIP cordless hotel phone; Type: PMX-S5410; Serial: 2G4S-12

Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:25.2 Medium parameters used: f = 1924.99 MHz; $\sigma = 1.379$ S/m; $\epsilon_r = 39.347$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7382; ConvF(8.3, 8.3, 8.3) @ 1924.99 MHz;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1325; Calibrated: 9/27/2023
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Body Front/DECT Mid/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0842 W/kg

Body Front/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.039 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.270 W/kg

SAR(1 g) = 0.059 W/kg; SAR(10 g) = 0.022 W/kg

Maximum value of SAR (measured) = 0.0860 W/kg

0 dB = 0.0860 W/kg = -10.66 dBW/kg

Plot: 9#

DUT: SIP cordless hotel phone; Type: PMX-S5410; Serial: 2G4S-12

Communication System: UID 0, DECT (0); Frequency: 1928.45 MHz;Duty Cycle: 1:25.2 Medium parameters used: f = 1928.45 MHz; $\sigma = 1.379$ S/m; $\epsilon_r = 39.333$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7382; ConvF(8.3, 8.3, 8.3) @ 1928.45 MHz;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1325; Calibrated: 9/27/2023
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Body Front/DECT High/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0846 W/kg

Body Front/DECT High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.970 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.117 W/kg

SAR(1 g) = 0.057 W/kg; SAR(10 g) = 0.028 W/kg

Maximum value of SAR (measured) = 0.0902 W/kg

0 dB = 0.0902 W/kg = -10.45 dBW/kg

Plot: 10#

DUT: SIP cordless hotel phone; Type: PMX-S5410; Serial: 2G4S-12

Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:25.2 Medium parameters used: f = 1924.99 MHz; $\sigma = 1.379$ S/m; $\epsilon_r = 39.347$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7382; ConvF(8.3, 8.3, 8.3) @ 1924.99 MHz;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1325; Calibrated: 9/27/2023
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Body Back/DECT Mid/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0701 W/kg

Body Back/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.471 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.109 W/kg

SAR(1 g) = 0.053 W/kg; SAR(10 g) = 0.026 W/kg

Maximum value of SAR (measured) = 0.0864 W/kg

0 dB = 0.0864 W/kg = -10.63 dBW/kg

APPENDIX A MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table. Measurement uncertainty evaluation for IEEE1528-2013 SAR test

Source of uncertainty	Tolerance/ uncertaint y ± %	Probability distributio n	Divisor	ci (1 g)	ci (10 g)	Standard uncertai nty ± %, (1 g)	Standard uncertai nty ± %, (10 g)
		Measurement	t system			5/	5/
Probe calibration	13.9	Ν	1	1	1	13.9	13.9
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7
Hemispherical Isotropy	9.6	R	√3	0	0	0.0	0.0
Boundary effect	1.0	R	√3	1	1	0.6	0.6
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7
Detection limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Modulation response	4.0	R	√3	1	1	2.3	2.3
Readout electronics	0.3	Ν	1	1	1	0.3	0.3
Response time	0.0	R	√3	1	1	0.0	0.0
Integration time	0.0	R	√3	1	1	0.0	0.0
RF ambientconditions – noise	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
RF ambient conditions-reflections	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Probe positioner mech. Restrictions	0.8	R	$\sqrt{3}$	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	$\sqrt{3}$	1	1	3.9	3.9
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	3.9	R	$\sqrt{3}$	1	1	2.3	2.3
		Test sample	related				
Test sample positioning	2.8	Ν	1	1	1	2.8	2.8
Device holder uncertainty	6.3	Ν	1	1	1	6.3	6.3
Drift of output power	5.0	R	$\sqrt{3}$	1	1	2.9	2.9
SAR scaling	2.0	R	$\sqrt{3}$	1	1	1.2	1.2
	Ph	antom and tissu	e parameter	s			
Phantom uncertainty (shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.3	2.3
Uncertainty in SAR correction for deviations in permittivity and conductivity	1.9	Ν	1	1	0.84	1.9	1.6
Liquid conductivity measurement	5.5	Ν	1	0.78	0.71	4.3	3.9
Liquid permittivity measurement	2.9	Ν	1	0.23	0.26	0.7	0.8
Liquid conductivity—temperature uncertainty	1.7	R	$\sqrt{3}$	0.78	0.71	0.8	0.7
Liquid permittivity—temperature uncertainty	2.7	R	$\sqrt{3}$	0.23	0.26	0.4	0.4
Combined standard uncertainty		RSS				12.2	12.0
Expanded uncertainty 95 % confidence interval)						24.3	23.9
TR-EM-SA005		Page 38 of 59				Version 1.0	(2023/10/07)

APPENDIX B EUT TEST POSITION PHOTOS

Liquid depth \geq 15cm

Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962

Head Left CheekSetup Photo (0 mm)

Head Left TiltSetup Photo (0 mm)

Head Right CheekSetup Photo (0 mm)

Head Right TiltSetup Photo (0 mm)

Body FrontSetup Photo (0 mm)

Body BackSetup Photo (0 mm)

APPENDIX C PROBE CALIBRATION CERTIFICATES

TTL s p	e a g	_	нацая САІСТ
Add: No 52 Hua Yuan Bei P	ON LABORATORY		う 校准 CALIBRATION
Tel: +86-10-62304633-2117		ing, roorsi, cinna and hindulation	CNAS L0570
E-mail: emr@caict.ac.cn	http://www.caict.ac.ci	Certificate No:	123760350
Client	-	Certificate NO.	323200333
CALIBRATION C	ERTIFICATE		
Object	EX3DV4 -	SN : 7382	
Calibration Procedure(c)			
Campianon Frocedure(s)	FF-Z11-00	4-02	
	Calibration	Procedures for Dosimetric E-field Probes	Sector Sector Sector
Calibration date:	September	27, 2023	
This sellen to the second			
This calibration Certificate docur	nents the traceability to	national standards, which realize the physical un	its of measurements(SI). The
measurements and the uncertain	nties with confidence pr	obability are given on the following pages and are	e part of the certificate.
All calibrations have been condu	icted in the closed labor	atory facility: environment temperature(22±3)°C an	nd humidity<70%.
Calibration Equipment used (M8	TE critical for calibration	2)	
Drimon: Standarda		17	10.0
Primary Standards	101010	12 lup 22(CTTL No. 122(05425)	
Power sensor NRP-791	101547	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Power sensor NRP-791	101548	12-Jun-23(CTTL No.123X05435)	Jun-24
Reference 10dBAttenuator	18N50W-10dB	19-Jan-23(CTTL, No.J23X00212)	Jan-25
Reference 20dBAttenuator	18N50W-20dB	19-Jan-23(CTTL, No.J23X00211)	Jan-25
Reference Probe EX3DV4	SN 3846	31-May-23(SPEAG, No.EX-3846 May23)	May-24
DAE4	SN 1555	24-Aug-23(SPEAG, No.DAE4-1555_Aug23)	Aug-24
DAE4	SN 549	24-Jan-23(SPEAG, No.DAE4-549_Jan23)	Jan-24
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerator MG3700A	6201052605	12-Jun-23(CTTL, No.J23X05434)	Jun-24
Network Analyzer E5071C	MY46110673	10-Jan-23(CTTL, No.J23X00104)	Jan-24
Reference 10dBAttenuator	BT0520	11-May-23(CTTL, No.J23X04061)	May-25
Reference 20dBAttenuator	BT0267	11-May-23(CTTL, No.J23X04062)	May-25
OCP DAK-3.5	SN 1040	18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_Ja	an23) Jan-24
N	ame F	unction Signatur	е
Calibrated by:	Yu Zongying	SAR Test Engineer	Sur
Reviewed by:	Lin Hao	SAR Test Engineer	AB
Approved by:	Qi Dianyuan	SAR Project Leader	202

TTL	In Collaboration with	a g	CAICT
Add: No.52	HuaYuanBei Road, Haid	lian District, Beijing, 100191, China	
Tel: +86-10- E-mail: emf@	52304633-2117 @caict.ac.cn http	o://www.caict.ac.en	
lossary:			
SL	tissue simulating	g liquid	
ORMx,y,z	sensitivity in free	e space	
ONVE	diodo compressi	L / NORMX,y,z	
F	crest factor (1/d	uty cycle) of the RF signal	
,B,C,D	modulation depe	endent linearization parameter	S
olarization Φ	Φ rotation aroun	d probe axis	
olarization θ	θ rotation around	d an axis that is in the plane n	ormal to probe axis (at measurement center), i
onnector Angle	e=0 is normal to	f probe axis	be sensor X to the robot coordinate system
alibration is I	Performed Acco	ording to the Following Sta	andards:
) IEEE Std 152	28-2013, "IEEE R	Recommended Practice for D	etermining the Peak Spatial-Averaged
Specific Abso	rption Rate (SAR	R) in the Human Head from	n Wireless Communications Devices:
Measurement	Techniques", June	2013	f Cresifie Absorption Date (CAD) from
hand-beld and	body-mounted de	evices used next to the ear (fr	equency range of 300 MHz to 6 GHz)"
July 2016	body mounted de	evices used heat to the out (in	
) IEČ 62209-2, "	Procedure to dete	ermine the Specific Absorption	Rate (SAR) for wireless communication
devices used	in close proximity	to the human body (frequend	cy range of 30 MHz to 6 GHz)", March
2010 KDB 965664	SAR Mossuramo	nt Requirements for 100 MHz	to 6 GHz"
ethods Appli	ed and Internret	tation of Parameters:	000012
NORMx.v.z:	Assessed for E-fie	ld polarization θ=0 (f≤900MHz	in TEM-cell; f>1800MHz: waveguide).
NORMx,y,z a	are only intermedia	ate values, i.e., the uncertaintie	es of NORMx,y,z does not effect the
E^2 -field unc	ertainty inside TSL	(see below ConvF).	
NORM(f)x,y,	$z = NORMx, y, z^* from the second s$	equency_response (see Frequency_response (see Frequency_response)	lency Response Chart). This
linearization	is implemented in	DASY4 software versions late	er than 4.2. The uncertainty of the
DCPx v z: DC	CP are numerical l	linearization parameters asses	sed based on the data of power sweep
(no uncertair	ty required). DCP	does not depend on frequence	y nor media.
PAR: PAR is	the Peak to Avera	ge Ratio that is not calibrated	but determined based on the signal
characteristic	S.		an never encoursed based on the
Ax, y, z; Bx, y, z data of nowe	r sween for specifi	ic modulation signal. The para	meters do not depend on frequency nor
media. VR is	the maximum cali	ibration range expressed in RI	MS voltage across the diode.
ConvF and E	Soundary Effect Pa	arameters: Assessed in flat ph	antom using E-field (or Temperature
Transfer Star	ndard for f≤800MH	Iz) and inside waveguide using	g analytical field distributions based on
power measu	urements for f >80	OMHz. The same setups are u	used for assessment of the parameters
These param	eters are used in	DASY4 software to improve p	robe accuracy close to the boundary.
The sensitivi	ty in TSL correspo	onds to NORMx,y,z* ConvF wh	ereby the uncertainty corresponds to
that given for	ConvF. A frequen	cy dependent ConvF is used	n DASY version 4.4 and higher which
allows extend	ding the validity fro	om±50MHz to±100MHz.	w gradiante realized using a flat
phantom exp	osed by a patch a	intenna.	w gradients realized using a liat
Sensor Offse	et: The sensor offs	et corresponds to the offset of	virtual measurement center from the
probe tip (on	probe axis). No to	plerance required.	
Connector A (no uncertair	ngle: The angle is ity required).	assessed using the informatic	n gained by determining the NORMx
Certificate No:J2	3Z60359	Page 2 of 9	
		1997 - 1 997 - 1997 - 1997	

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7382

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (<i>k</i> =2)
Norm(µV/(V/m) ²) ^A	0.42	0.42	0.47	±10.0%
DCP(mV) ^B	100.8	101.0	103.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)
0	CW	х	0.0	0.0	1.0	0.00	160.9	±2.0%
		Y	0.0	0.0	1.0		159.5	
		Z	0.0	0.0	1.0		178.1	7

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:J23Z60359

Page 3 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7382

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	10.65	10.65	10.65	0.17	1.24	±12.7%
900	41.5	0.97	10.19	10.19	10.19	0.20	1.15	±12.7%
1750	40.1	1.37	8.60	8.60	8.60	0.26	0.97	±12.7%
1900	40.0	1.40	8.30	8.30	8.30	0.25	1.01	±12.7%
2300	39.5	1.67	8.16	8.16	8.16	0.60	0.68	±12.7%
2450	39.2	1.80	7.89	7.89	7.89	0.45	0.86	±12.7%
2600	39.0	1.96	7.65	7.65	7.65	0.53	0.77	±12.7%
3300	38.2	2.71	7.39	7.39	7.39	0.49	0.86	±13.9%
3500	37.9	2.91	7.24	7.24	7.24	0.41	1.03	±13.9%
3700	37.7	3.12	7.10	7.10	7.10	0.43	1.03	±13.9%
3900	37.5	3.32	6.98	6.98	6.98	0.40	1.25	±13.9%
5250	35.9	4.71	5.62	5.62	5.62	0.50	1.25	±13.9%
5500	35.6	4.96	5.10	5.10	5.10	0.40	1.50	±13.9%
5750	35.4	5.22	5.08	5.08	5.08	0.40	1.52	±13.9%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:J23Z60359

Page 4 of 9

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caiet.ac.cn http://www.caiet.ac.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:J23Z60359

Page 5 of 9

Add: No.52 HuaYnanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7382

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	65.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:J23Z60359

Page 9 of 9

APPENDIX D DIPOLE CALIBRATION CERTIFICATES

Client BAC	ad, Haidian District, http://www.caic	Beijing, 100191 Madalahan C Lac.cn Certificate No: Z	23-60084			
CALIBRATION CI	ERTIFICAT	E				
Object	D1900	/2 - SN: 5d231				
Calibration Procedure(s)	FF-Z11 Calibra	-003-01 tion Procedures for dipole validation kits				
Calibration date: February 17, 2023						
This calibration Certificate measurements (SI). The me pages and are part of the co	documents the easurements and ertificate.	traceability to national standards, which re the uncertainties with confidence probability	alize the physical units of are given on the following			
humidity<70%. Calibration Equipment used	(M&TE critical fo	or calibration)				
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration			
Power Meter NRP2	106276	10-May-22 (CTTL, No.J22X03103)	May-23			
Power sensor NRP6A	101369 SN 7464	10-May-22 (CTTL, No.J22X03103)	May-23			
DAE4	SN 1556	11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24			
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration			
Signal Generator E4438C	MY49070393	17-May-23 (CTTL, No.J22X03157)	May-24			
NetworkAnalyzer E5071C	MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24			
	Name	Function	Signature			
Collibrated but	Zhao Jing	SAR Test Engineer	最近			
Calibrated by.	Lin Hao	SAR Test Engineer	林光			
Reviewed by:						
Reviewed by: Approved by:	Qi Dianyuan	SAR Project Leader	2262			

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: ettl@chinattl.com http://www.caict.ac.cn

Measurement Conditions

 DASY system configuration, as far as not given on page 1.

 DASY Version
 DASY52
 52.10.4

 Extrapolation
 Advanced Extrapolation

 Phantom
 Triple Flat Phantom 5.1C

 Distance Dipole Center - TSL
 10 mm
 with Spacer

 Zoom Scan Resolution
 dx, dy, dz = 5 mm

 Frequency
 1900 MHz ± 1 MHz

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ±0.2) °C	39.0 ±6 %	1.39 mho/m ±6 %
Head TSL temperature change during test	<1.0 °C	-	

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.9 W/kg ±18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.21 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.8 W/kg ±18.7 % (k=2)

Certificate No: Z23-60084

Page 3 of 6

A	Add: No.52 Hua YuanBei Road, Haid Tel: +86-10-62304633-2117 E-mail: cttl@chinattLcom htt appendix (Additional assess intenna Parameters with Hei Impedance, transformed to feed po Return Loss ieneral Antenna Parameters	ian District, Beijing, 100191, China p://www.caict.ac.cn ments outside the scop ad TSL	50.3Ω+ 4.99jΩ
A	ppendix (Additional assess intenna Parameters with He Impedance, transformed to feed po Return Loss ieneral Antenna Parameters	ments outside the scop ad TSL	50.3Ω+ 4.99jΩ
G	Impedance, transformed to feed po Return Loss	ad TSL	50.3Ω+ 4.99jΩ
G	Impedance, transformed to feed po Return Loss eneral Antenna Parameters	int	50.3Ω+ 4.99jΩ
G	Return Loss General Antenna Parameters		
G	ieneral Antenna Parameters		- 26.1dB
		and Design	
	Electrical Delay (one direction)		1.105 ns
T c o a a N o	the dipole is made of standard sem onnected to the second arm of the f the dipoles, small end caps are a ccording to the position as explain ffected by this change. The overal o excessive force must be applied onnections near the feed-point ma	hirigid coaxial cable. The cen dipole. The antenna is there dided to the dipole arms in o ed in the "Measurement Cor I dipole length is still accordii I to the dipole arms, because y be damaged.	ter conductor of the feeding line is directly fore short-circuited for DC-signals. On some rder to improve matching when loaded ditions" paragraph. The SAR data are not ng to the Standard.
	Manufactured by		SPEAG
Ce	rtificate No: Z23-60084	Page 4 of 6	
	na suga na mang na	2	

Add No.32 HarVanable Road, Hainam Dahmer, Beigng, 10091, China Tif: 48-06-230403-2117 Benail: ettiggebinnetti.com http://www.exist.ac.com SAYS Validation Report for Head TSL Set Laboratory: CTTL, Beijing, China UT: Bijole 1090 MHz; 7 pp: B19000V2; Serial: D1900V2 - SN: 5d231 Communication System: UID 0, CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.393$ S/m; $e_{\sigma} = 38.96; \rho = 1000$ kg/m ³ Phantom section: Right Section Measurement Standard: DASYS (IEEE/IEC/ANSI C63.19-2007) Measurement Standard: DASY (IEEE/IEC/ANSI C63.19-2007)	Add: No.52 Hun YuanBer Kond, Handian District, Beijing, 100191, G Tel: +86-10-62304633-2117 E-mail: ett@chinattLoom ASY5 Validation Report for Head TSL est Laboratory: CTTL, Beijing, China UT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900 Communication System: UID 0, CW; Frequency: 1900 N Medium parameters used: f = 1900 MHz; σ = 1.393 S/m Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.	Date: 2023-02-17
Permit: ettl@ehinattl.com Date: 2023-02-17 Set Laboratory: CTTL, Beijing, China Date: 2023-02-17 With Laboratory: CTTL, Beijing, China Difference With Laboratory: CTTL, Beijing, China Difference With Laboratory: CTTL, Beijing, China Difference Wedium parameters used: f = 1900 MHz; σ = 1.393 S/m; e, = 38.96; p = 1000 kg/m³ Difference Medium parameters used: f = 1900 MHz; σ = 1.393 S/m; e, = 38.96; p = 1000 kg/m³ Difference Measurement Standard: DASYS (IEEE/IEC/ANSI C63.19-2007) Difference Measurement Standard: DASYS (IEEE/IEC/ANSI C63.19-2007) Difference Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1556; Calibrate1: 2023-01-11 Phantom: MFP, VS.1C (20deg probe tilt); Type: 0000 P51 Cx; Serial: 1062 DASY52 S2.10.4(1535); SEMCAD X 14.6.14(7501) Difference Value = 100.8 V/m; Power Drift = -0.04 dB Pak SAR (karapolated) = 18.9 W/kg SAR(10 g) = 10 W/kg; SAR(10 g) = 15.7 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Datom: mc/anor Marinum value of SAR (measured) = 15.7 W/kg Difference Value = 0.04 R (measured) = 15.7 W/kg Marinum value of SAR (measured) = 15.7 W/kg Difference Marinum value of SAR (measured) = 15.7 W/kg <	E-mail: ettl@chinattl.com http://www.caict.ac.en ASY5 Validation Report for Head TSL est Laboratory: CTTL, Beijing, China UT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900 Communication System: UID 0, CW; Frequency: 1900 M Medium parameters used: $f = 1900$ MHz; $\sigma = 1.393$ S/m Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.	Date: 2023-02-17
ASYS Validation Report for Head TSLDate: 2023-02-17Text Laboratory: CTTL, Beijing, ChinaDifferenceUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d231Communication System: UID 0, CW; Frequency: 1900 MHz; matter sused: f = 1900 MHz; $\sigma = 1.393$ S/m; $e_r = 38.96; \rho = 1000$ kg/m³Measurement Standard: DASYS (IEEE/IEC/ANSI C63.19-2007)XSYS Configuration:• Probe: EX3DV4 - SN7464; ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 2023-01-19• Probe: EX3DV4 - SN7464; ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 2023-01-19• Probe: EX3DV4 - SN7464; ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 2023-01-19• Probe: EX3DV4 - SN7464; ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 2023-01-19• Probe: EX3DV4 - SN7464; ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 2023-01-19• Probe: EX3DV4 - SN7464; ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 2023-01-19• Probe: EX3DV4 - SN7464; ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 2023-01-19• Sensor-Surface: 1.4mm (Mechanical Surface Detection)• Electronics: DAE4 Sn1556; Calibrated: 2023-01-11• Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062• DASYS 25 2.10.4(1535); SEMCAD X 14.6.14(7501)Diple Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm dy=5mm, dz=5mm dy=5mm, dz=5mm dy=5mm Maximum value of SAR (10 g) = 5.21 W/kgSandlest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M1 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg 0 0 0 0 0 0 <	ASY5 Validation Report for Head TSL est Laboratory: CTTL, Beijing, China UT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900 Communication System: UID 0, CW; Frequency: 1900 M Medium parameters used: f = 1900 MHz; σ = 1.393 S/m Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.	Date: 2023-02-17
'est Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d231 Communication System: UID 0, CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.393 S/m; e_r = 38.96; ρ = 1000 kg/m ³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) >ASY5 Configuration: • Probe: EX3DV4 - SN7464; ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 2023-01-19 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 • Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration /Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg $d\theta$ θ θ θ θ θ θ θ	est Laboratory: CTTL, Beijing, China UT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900 Communication System: UID 0, CW; Frequency: 1900 M Medium parameters used: f = 1900 MHz; σ = 1.393 S/m Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.	V2
Purp To prote 1900 WHz; Type: D1900V2; Serial: D1900V2 - SN: 50231 Communication System: UID 0, CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.393$ S/m; $\epsilon_r = 38.96$; $\rho = 1000$ kg/m ³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: • Probe: EX3DV4 - SN7464; ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 2023-01-19 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sol556; Calibrated: 2023-01-11 • Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/g Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg Maximum value of SAR (measured) = 15.7 W/kg	Communication System: UID 0, CW; Frequency: 1900 I Medium parameters used: $f = 1900$ MHz; $\sigma = 1.393$ S/m Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.	1 7 S N * S 1 7 5 1
The formulation system: 010 0, CW, Frequency: 1900 MHz Medium parameters used: $f = 1900$ MHz; $\sigma = 1.393$ S/m; $\epsilon_r = 38.96$; $\rho = 1000$ kg/m ³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: • Probe: EX3DV4 - SN7464; ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 2023-01-19 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 • Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration /Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dg=5mm, $dx=5mmReference Value = 100.8 V/m; Power Drift = -0.04 dBPeak SAR (extrapolated) = 18.9 W/kgSAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kgSmallest distance from peaks to all points 3 dB below = 10 mmRatio of SAR at M2 to SAR at M1 = 53.6%Maximum value of SAR (measured) = 15.7 W/kgdf = \frac{1}{13.94}df = \frac{1}{13.94}df$	Medium parameters used: $f = 1900$ MHz; $\sigma = 1.393$ S/m Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.)	4 2 - 514. 50251
Meanum parameters used: $r = 1500$ MHz, $6 = 1.359$ S/hl, $4r = 36.96$, $p = 1000$ Kg/hl Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: • Probe: EX3DV4 - SN7464; ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 2023-01-19 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 • Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration /Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg Maximum value of SAR (measured) = 15.7 W/kg 0 = 10.4B = 15.7 W/kg = 11.96 dBW/kg	Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.)	$r_{12} = -28.06; a = 1000 kg/m^3$
Measurement Standard: DASY'S (IEEE/IEC/ANSI C63.19-2007) JASY'S Configuration: • Probe: EX3DV4 - SN7464; ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 2023-01-19 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 • Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 • DASY'S 252.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration /Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg 10^{40}	Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.	, ε _f = 58.90, β = 1000 kg/m
Masurement is and all if N3 is (Interpretendent Cosits Cosits Cosits) DASYS Configuration: • Probe: EX3DV4 - SN7464; ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 2023-01-19 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronice: DAE4 Sn1556; Calibrated: 2023-01-11 • Phantom: MFP_VS.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 • DASYS2 52.10.4(1535); SEMCAD X 14.6.14(7501) Tople Calibration /Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg 10.4 0 $\int df = 1000 \int df = 1000 \int df = 0000 \int df = 00000 \int df = 0000 \int df = 00000 \int df = 000000 \int df = 0000000 \int df = 00000000 \int df = 000000000 \int df = 0000000000 \int df = 00000000000 \int df = 0000000000000000000000000000000000$	Measurement Standard, DAS 15 (IEEE/IEC/AIAS1 COS.	19-2007)
 Probe: EX3DV4 - SN7464; ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 2023-01-19 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 Phantom: MFP_VS.IC (20de probe tilt); Type: QD 000 P51 Cx; Serial: 1062 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Tople Calibration /Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.8 V/m; Power Drift = -0.04 dB Rejerence Value = 10.8 V/m; Power Drift = -0.04 dB Ray SAR (extrapolated) = 18.9 Wkg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg Tople Galibration Output Output	ASY5 Configuration:	19-2007)
 Proof: EX3DV4 - 5N/464; Convr(6.15, 6.15, 6.15) (@ 1900 MH2; Calibrated: 2023-01-19 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 Phantom: MFP_V5.1C (20deg probe till); Type: QD 000 P51 Cx; Serial: 1062 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration /Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/g Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg Image: A control of the form of the state of	Della EV2DUA ONPACA ComE/0 12 9 1	2 9 12) @ 1000 MHz; Calibrated:
9 Sensor-Surface: 1.4mm (Mechanical Surface Detection) 9 Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 9 Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 9 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration /Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/g SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg $df = \frac{1}{9.49}$ $df = \frac{1}{9.49}$ $df = \frac{1}{9.49}$ $df = \frac{1}{13.95}$ df = 10.46 df = 10.46 df = 10.46 df = 10.46 df = 10.46 df = 15.7 W/kg = 11.96 dBW/kg	 Probe: EX3D v4 - SN /464; ConvP(8.13, 8.1 2022 01 10 	5, 6.15) (@ 1900 MHz; Calibrated:
 Sensor-surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg Image: Same of Same of SAR (measured) = 15.7 W/kg Image: Same of Sa	2023-01-19	Detection
 Electronics: DAE's Sh1556; Calibrated: 2025-01-11 Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0; Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg Image: Sare of the straight of the straigh	 Sensor-Surface: 1.4mm (Mechanical Surface Electronical DARA & 1666, Collibert 1, 2000) 	2 01 11
• Phannon: MPP_V3.1C (20deg probe diff), Type: QD 000 F31 CX; Senar: 1002 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,3,6}^{0}$ $df_{1,6}^{0}$	 Electronics: DAE4 Sn1556; Calibrated: 202. Phontony: MED, V6 10 (204) as make site: 75 	Una: OD 000 P51 Cv: Sarial: 1062
• DAST32 32.10.4(1535); SEMICAD A 14.0.14(1501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg Maximum value of SAR (measured) = 15.7 W/kg -1.04 0 dB = 15.7 W/kg = 11.96 dBW/kg	 Phantom: MPP_v5.1C (20deg probe till); 1) DASV52 52 10 4(1525); SEMCAD X 14 5 	ype, QD 000 F51 CX; Serial: 1002
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg = 15.7 W/kg = 11.96 dBW/kg	 DA515252.10.4(1555); SEMCAD X 14.6.1 	(1301)
dy=5mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/g SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg dB d	Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cu	ube 0: Measurement grid: dx=5mm,
Reference Value = 100.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg dB	dy=5mm, dz=5mm	
Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg 0 0 0 0 0 0 0 0 0 0	Reference Value = 100.8 V/m; Power Drift = -0.04	dB
SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg $\begin{pmatrix} 0 \\ -3.49 \\ -5.98 \\ -10.46 \\ -13.95 \\ -17.44 \end{pmatrix}$ $\int 0 dB = 15.7 W/kg = 11.96 dBW/kg$	Peak SAR (extrapolated) = 18.9 W/kg	
Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg -3.49 -3.49 -6.98 -19.46 -13.95 -17.44 0 dB = 15.7 W/kg = 11.96 dBW/kg	SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg	
Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 15.7 W/kg	Smallest distance from peaks to all points 3 dB belo	w = 10 mm
Maximum value of SAR (measured) = 15.7 W/kg $\begin{pmatrix} 0B \\ -3.49 \\ -6.98 \\ -18.46 \\ -13.95 \\ -17.44 \end{pmatrix}$ $O dB = 15.7 W/kg = 11.96 \ dBW/kg$	Ratio of SAR at M2 to SAR at M1 = 53.6%	
$\begin{array}{c} dB \\ 0 \\ -3.49 \\ -5.98 \\ -18.46 \\ -13.95 \\ -17.44 \end{array}$ $0 \text{ dB} = 15.7 \text{ W/kg} = 11.96 \text{ dBW/kg}$	Maximum value of SAR (measured) = 15.7 W/kg	
dB -3.49 -5.98 -10.46 -13.95 -7.44 0 dB = 15.7 W/kg = 11.96 dBW/kg		
-3.49 -5.98 -19.46 -13.95 -7.44 O dB = 15.7 W/kg = 11.96 dBW/kg	dB	N.N.N.N.
-3.49 -6.98 -18.46 -13.95 -7.44 O dB = 15.7 W/kg = 11.96 dBW/kg		
-3.43 -18.46 -13.95 -17.44 O dB = 15.7 W/kg = 11.96 dBW/kg		MAR OF
-6.98 -19.46 -13.95 -17.44 O dB = 15.7 W/kg = 11.96 dBW/kg	-3.49	
-10.46 -13.95 -17.44 0 dB = 15.7 W/kg = 11.96 dBW/kg		
-19.46 -13.95 -17.44 0 dB = 15.7 W/kg = 11.96 dBW/kg	-6.30	
-13.95 -17.44 0 dB = 15.7 W/kg = 11.96 dBW/kg	-19.45	
-13.95 -17.44 0 dB = 15.7 W/kg = 11.96 dBW/kg	10.40	
-17.44 0 dB = 15.7 W/kg = 11.96 dBW/kg	13.95	And and a second se
-17.44 0 dB = 15.7 W/kg = 11.96 dBW/kg	-10.00	
0 dB = 15.7 W/kg = 11.96 dBW/kg	17.44	
o do - isin tring - inio dotting	0 dR = 15.7 W/ka = 11.96 dRW/ka	
	0 db = 15/1 41/kg = 11/5 db 41/kg	
	ertificate No: Z23-60084 Page 5 of 6	
Certificate No: Z23-60084 Page 5 of 6		
Certificate No: Z23-60084 Page 5 of 6		
Certificate No: Z23-60084 Page 5 of 6		

APPENDIX E RETURN LOSS&IMPEDANCE MEASUREMENT

Equipment Details:

Description:	Dipole
Manufacturer:	Speag
Model Number:	D1900V2
Serial Number:	5d231
Calibration Date:	2024/02/01
Calibrated By:	Sid Luo
Signature:	Sid Luo

All Calibration have been conducted in the closed laboratory facility: Lab Temperature 18°C-25°C and humidity <70%

The calibration methods and procedures used were as detailed in:

FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"

- 1. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 2. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

Equipment	Model	S/N	Calibration Date	Calibration Due Date
Simulated Tissue Liquid Head	HBBL600-10000V6	2200808-2	Each	Time
SAM Twin Phantom	SAM-Twin V8.0	1962	NCR	NCR
Network Analyzer	E5071C	SER MY46519680	2023/06/08	2024/06/07
Network Analyzer Calibration Kit	50Ω	51026	NCR	NCR

Calibrated Equipment:

Test Data:

Frequency (MHz)	Simulated Liquid	Parameter	Measured Value	Target Value	Deviation	Reference Range	Results
		Return Loss	27.268 dB	26.067dB	4.607 %	±20%;≤20dB	Pass
1900	Head	Real Impedance	52.799 Ω	50.307 Ω	2.492 Ω	$\leq 5\Omega$	Pass
		Imaginary Impedance	3.453 Ω	4.985 Ω	-1.532 Ω	$\leq 5\Omega$	Pass

Note: Return LossDeviation = (Measured-Target)/Target×100%

***** END OF REPORT *****

Version 1.0 (2023/10/07)